A= (1+1/1 x 3)x(1+1/2x4)x(1+1/3x5)x............x(1+1/2011x2013)
\(=\left(\frac{3}{3}+\frac{1}{3}\right)\left(\frac{8}{8}+\frac{1}{8}\right)....\left(\frac{4048143}{4048143}+\frac{1}{4048143}\right)\)
\(=\frac{4}{3}\cdot\frac{9}{8}\cdot...\cdot\frac{4048144}{4048143}\)
\(=\frac{4\cdot9\cdot....\cdot4048144}{3\cdot8\cdot....\cdot4048143}\)
\(=\frac{2\cdot2\cdot3\cdot3\cdot....\cdot2012\cdot2012}{1\cdot3\cdot2\cdot4\cdot....\cdot2011\cdot2013}\)
\(=\frac{2\cdot2012}{2013}=\frac{4024}{2013}\)