Cho tam giác ABC vuông tại A, có độ dài các cạnh của tam giác thoả mãn hệ thức:
BC2 =AC2 +AB.AC, hãy tính số đo góc ABC.
cho 3 số a,b,c là 3 cạnh của một tam giác thỏa mãn:
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{3}{2}\)
chứng minh tam giác abc đều
Cho tam giác ABC có: góc B = 90 độ + góc C , nội tiếp đường tròn O. Qua B kẻ đường thẳng vuông góc với BC cắt đường tròn O tại I, tiếp tuyến của đường tròn O kẻ từ A cắt BC tại H. Chứng minh :
a) AH vuông góc BC
b) AB^2 + AC^2 = 4R^2
Cho tam giác ABC có BC =a,AC=b,AB=c là độ dài 3 cạnh của tam giac thỏa mãn hệ thức :\(\dfrac{ab}{b+c}+\dfrac{bc}{c+a}+\dfrac{ca}{b+a}=\dfrac{ac}{b+c}+\dfrac{ab}{c+a}+\dfrac{bc}{b+a}\) .Chứng minh rằng tam giac ABC là tam giác cân
cho tam giác ABC có chu vi là 2P.Các đường tròn bàng tiếp trong góc A,B,C tiếp cúc với các cạnh BC,CA,AB theo thứ tự A1,B1,C1 .Đường tròn bàng tiếp của tam giác tiếp xúc với BC tại m
a) chứng minh CM=P
b) chứng minh rằng nếu AA1=BB1=CC1 thì tam giác ABC đều
Cho tam giác ABC vuông tại A có BD là tia phân giác của góc B ( D thuộc AC).Chứng minh rằng :\(\dfrac{B}{2}\) =\(\dfrac{AC}{BC+AB}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)
trắc nghiệm
1.cho tam giác ABC vuông tại A, AC=2cm, sinB=\(\dfrac{1}{2}\). độ dài cạnh huyền BC là...
2.giá trị của biểu thức M=sin\(^235^0+sin^255^0+cot53^0.cot37^0\) bằng...
3.các tia nắng mặt trời tạo với mặt đất 1 góc bằng 60\(^0\) và bóng của 1 tháp trên mặt đất dài 68m. chiều cao của tháp (làm tròn đến m) là...
4.tam giác ABC vuông tại A đường cao AH biết AB:AC=3:4 và BC=5. độ dài của đoạn thẳng AH bằng...
5.tam giác ABC vuông tại A đường cao AH biết AC=6cm và HB=9cm . diện tích tam giác ABC bằng...