\(9^{200}=\left(3^2\right)^{200}=3^{400}\Rightarrow3^{400}=9^{200}\)
\(2^{91}=\left(2^{13}\right)^7=4096^7;5^{35}=\left(5^5\right)^7=3125^7\)
\(\Rightarrow2^{91}>5^{35}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\Rightarrow3^{200}>2^{300}\)