x3-3x2+4=0
⇔x3+x2-4x2-4x+4x+4=0
⇔(x3+x2)-(4x2+4x)+(4x+4)=0
⇔x2(x+1)-4x(x+1)+4(x+1)=0
⇔(x+1)(x2-4x+4)=0
⇔(x+1)(x-2)2=0
=>\(\left\{{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
vậy S={-1;2}
(x3+x2)-(4x2-4x)+(4x+4)=0
=> x2(x+1)-4x(x+1)+4(x+1)=0
=> (x2-4x+4)(x+1)=0
=> (x-2)2(x+1)=0
=> \(\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)