Lời giải:
Ta có:
\(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{zx+z+1}\)
\(A=\frac{xz}{xyz+xz+z}+\frac{y.xz}{yz.xz+y.xz+xz}+\frac{z}{zx+z+1}\)
\(A=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\) (thay \(xyz=1\) )
\(A=\frac{xz+1+z}{1+xz+z}=1\)
Lời giải:
Ta có:
\(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{zx+z+1}\)
\(A=\frac{xz}{xyz+xz+z}+\frac{y.xz}{yz.xz+y.xz+xz}+\frac{z}{zx+z+1}\)
\(A=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\) (thay \(xyz=1\) )
\(A=\frac{xz+1+z}{1+xz+z}=1\)
Tìm x,y,z biết :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{Z}{4}\) và x.y+y.z+z.x=104
Cho x,y,z là số thực tùy ý biết x+y+z=0 và -1≤x≤1; -1≤y≤1; -1≤z≤1
Chứng minh x2+y4+z6≤2
Tìm x,y,z biết
\(\dfrac{y+z+1}{x}=\dfrac{z+x+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
Tìm các số x, y, z, biết rằng: a. \(\frac{1+4y}{13}=\frac{1+6y}{19}=\frac{1+8y}{5x}\)
b.\(\frac{2x+1}{5}=\frac{y-2}{7}=\frac{2x+3y-1}{6x}\)
c.\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{y+x-3}{z}=\frac{1}{x+y+z}\)
BT2: Tìm x, y, z biết: (x-1).(y-2).(z-5)=0 và x+2 = y+1 = z+3
\(\dfrac{x-y+z}{z}=\dfrac{y+z-x}{x}=\dfrac{x-y+z}{y}\)
Tính A= \(\left(1+\dfrac{y}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{x}{z}\right)\)
Bài 4: Cho \(\dfrac{x+y-z}{x}=\dfrac{y+z-x}{y}=\dfrac{z+x-y}{z}\)
Tính A = \(\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
Tìm x,y:
l3x-1l+l2y-3l=0.Tính A=x^2+y^2
lx+2l+(2y-1)+lx+y+z-4l=0.Tính B=x^2+y^2+z^2
1/ So sánh:
\(\frac{1}{^{101^2}}\) + \(\frac{1}{102^2}\)+ \(\frac{1}{103^2}\)+\(\frac{1}{104^2}\)+ \(\frac{1}{105^2}\) và \(\frac{1}{2^3.3.5^2.7}\)
2/ Tìm x,y,z. Biết:
a) x:2= y:5 và x+y = 21
b) \(\frac{15}{x-9}\)=\(\frac{20}{y-12}\)=\(\frac{40}{z-24}\) và x.y=1200
Giúp mình với....Cảm ơn!!!