Phương trình hoành độ giao điểm là:
\(x^2+x+1=-x^2+2x+4\)
=>\(x^2+x+1+x^2-2x-4=0\)
=>\(2x^2-x-3=0\)(1)
a=2; b=-1;c=-3
\(a\cdot c=2\cdot\left(-3\right)=-6< 0\)
=>Phương trình (1) có hai nghiệm phân biệt
Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-1\right)}{2}=\dfrac{1}{2}\\x_1\cdot x_2=\dfrac{c}{a}=-\dfrac{3}{2}\end{matrix}\right.\)
\(P=x_1^3+x_2^3\)
\(=\left(x_1+x_2\right)^3-3\cdot x_1\cdot x_2\left(x_1+x_2\right)\)
\(=\left(\dfrac{1}{2}\right)^3-3\cdot\dfrac{-3}{2}\cdot\dfrac{1}{2}\)
\(=\dfrac{1}{8}+\dfrac{9}{4}=\dfrac{1}{8}+\dfrac{18}{8}=\dfrac{19}{8}\)