đồ thị hàm số \(y=x^2-24x+m^2+2m+84\) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là \(x_1,x_2\) thỏa mãn \(x_2=x_1^3-29x_1-24\). Gọi S là tổng các giá trị của m . Tính giá trị của S
tìm tất cả các giá trị của m sao cho đồ thị hàm số \(y=\left(m+1\right)x^2+2x+3m-2\) cắt đồ thị hàm sại đúng 2 điểm phân biệt có hoành độ \(x_1;x_2\) thỏa mãn \(x_1+2x_2=1\)
tìm tất cả các giá trị của m sao cho hai parabol \(y=x^2+mx+\left(m+1\right)^2\) và \(y=-x^2-\left(m+2\right)x-2\left(m+1\right)\) cắt nhau tại 2 điểm có hoành độ lần lượt là \(x_1;x_2\) thỏa mãn \(P=\left|x_1x_2-3\left(x_1+x_2\right)\right|\) đạt giá trị lớn nhất.
biết rằng parabol \(y=x^2+x+1\) cắt parabol \(y=-x^2+2x+4\) tại 2 điểm phân biệt có hoành độ lần lượt là \(x_1\) và \(x_2\). tính giá trị biểu thức \(P=x_1^3+x_2^3\)
Cho hàm số y= x + 2\((m+1)x+m^2+m\) có đồ thị \((P)\)
a, Khi m =1 , tìm trên\((P)\) các điểm có tung độ bằng -1
b, Tìm m để \((P)\)cắt trục hoành tại hai điểm phân biệt x ; x thỏa mãn \(|x_1-x_2|\text{=\sqrt{5}}\)
cho parabol (P): \(y=x^2-2x+4\) và đường thẳng d: \(y=2mx-m^2\) (m là tham số). tìm các gia strij của m để d cắt (P) tại 2 điểm phân biệt có hoành độ là \(x_1;x_2\) thỏa mãn \(x_1^2+2\left(m+1\right)x_2=3m^2+16\)
tìm tất cả các giá trị của m sao cho đồ thị hàm số cắt đồ thị hàm số tại \(y=x^2+2mx+4\) đúng 2 điểm phân biệt có hoành độ thỏa mãn
tìm m để đồ thị hàm số \(y=x^2+3x+m\) cắt trục hoành tại 2 điểm phân biệt
cho parabol (P): \(y=\dfrac{1}{2}x^2\) và đường thẳng d:\(y=\left(m+1\right)x-m^2-\dfrac{1}{2}\) (m là tham số)
tìm các giá trị của m thì đường thẳng d cắt parabol (P) tại 2 điểm \(A\left(x_1;y_1\right)\), \(B\left(x_2;y_2\right)\) sao cho biểu thức \(T=y_1+y_2-x_1x_2-\left(x_1+x_2\right)\) đạt GTNN