\(lim_{x->a}\left[\dfrac{1}{\left(x-a\right)^2}\left(x^2-8x+10+\dfrac{81}{x+2\sqrt{x-1}}-2\sqrt{x-1}\right)\right]=\dfrac{21}{16}\)
\(lim_{x->b}\left[\dfrac{4}{\left(x-b\right)^2}\left(x^2-x+2-2\sqrt{x}\right)\right]=c\)
với a,b,c là các số thực. Tìm a,b,c
Cho hàm số y=\(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\) với x thuộc \(\left(\dfrac{\text{π}}{4};\dfrac{\text{π}}{2}\right)\). Tìm giá trị nhỏ nhất của hàm số
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số :
a) \(y=3-2\left|\sin x\right|\)
b) \(y=\cos x+\cos\left(x-\dfrac{\pi}{3}\right)\)
c) \(y=\cos^2x+2\cos2x\)
d) \(y=\sqrt{5-2\cos^2x\sin^2x}\)
Tìm giá trị lớn nhất , nhỏ nhất của hàm số:
a/ \(f\left(x\right)=2\cos x-3\)
b/ \(f\left(x\right)=3\sqrt{7+2\sin x}\)
c/ \(f\left(x\right)=3\sqrt{7+2\sin^2x}\)
d/ \(f\left(x\right)=\dfrac{2-5\cos^2x}{3}\)
tìm giá trị lớn nhất và nhỏ nhất của mỗi hàm số sau : a) y = \(\sqrt{1-\sin\left(x^2\right)}-1\) ; b) y = \(4\sin\sqrt{x}\).
tìm giá trị lớn nhất và nhỏ nhất của mỗi hàm số sau : a) y = \(\sqrt{1-\sin\left(x^2\right)}-1\) ; b) y = \(4\sin\sqrt{x}\).
tìm giá trị lớn nhất và nhỏ nhất của mỗi hàm số sau : a) y = \(\sqrt{1-\sin\left(x^2\right)}-1\) ; b) y = \(4\sin\sqrt{x}\).
tìm giá trị lớn nhất và nhỏ nhất của mỗi hàm số sau : a) y = \(\sqrt{1-\sin\left(x^2\right)}-1\) ; b) y = 4\(\sin\)\(\sqrt{x}\).
Giá trị lớn nhất, nhỏ nhất của các hàm số :
a/ \(y=\sqrt{2-\sin x}\)
b/ \(y=\sin\dfrac{x}{2-x}\)
c/ \(y=\sin\left(\dfrac{2x}{\sqrt{x-1}}\right)\)
d/ \(y=\tan x+\cot2x\)
e/ \(y=\sqrt{\dfrac{\cos x+3}{\sin x+1}}\)