tìm giá trị lớn nhất và nhỏ nhất của mỗi hàm số sau : a) y = \(\sqrt{1-\sin\left(x^2\right)}-1\) ; b) y = \(4\sin\sqrt{x}\).
tìm giá trị lớn nhất và nhỏ nhất của mỗi hàm số sau : a) y = \(\sqrt{1-\sin\left(x^2\right)}-1\) ; b) y = \(4\sin\sqrt{x}\).
tìm giá trị lớn nhất và nhỏ nhất của mỗi hàm số sau : a) y = \(\sqrt{1-\sin\left(x^2\right)}-1\) ; b) y = \(4\sin\sqrt{x}\).
tìm giá trị lớn nhất và nhỏ nhất của mỗi hàm số sau : a) y = 2\(\cos\)(x + \(\frac{\pi}{3}\)) ; b) y = \(\sqrt{1-\sin\left(x^2\right)}\) \(-\)1 ; c) y = 4\(\sin\sqrt{x}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số :
a) \(y=3-2\left|\sin x\right|\)
b) \(y=\cos x+\cos\left(x-\dfrac{\pi}{3}\right)\)
c) \(y=\cos^2x+2\cos2x\)
d) \(y=\sqrt{5-2\cos^2x\sin^2x}\)
Giá trị lớn nhất, nhỏ nhất của các hàm số :
a/ \(y=\sqrt{2-\sin x}\)
b/ \(y=\sin\dfrac{x}{2-x}\)
c/ \(y=\sin\left(\dfrac{2x}{\sqrt{x-1}}\right)\)
d/ \(y=\tan x+\cot2x\)
e/ \(y=\sqrt{\dfrac{\cos x+3}{\sin x+1}}\)
Cho hàm số y=\(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\) với x thuộc \(\left(\dfrac{\text{π}}{4};\dfrac{\text{π}}{2}\right)\). Tìm giá trị nhỏ nhất của hàm số
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
\(y=sin\dfrac{2x}{x^2+1}+cos\dfrac{x}{x^2+1}+1\)
tìm giá trị lớn nhất giá trị nhỏ nhất của hàm số y=căn(1-sin(x²))-1