Bài 1: a) Chứng minh với n là số tự nhiên thì A = 3n+3 + 5n+3 + 3n+1 + 5n+2 chia hết cho 60
b) Chứng minh rằng nếu a/b = c/d thì [(a-b)/(c-d)]^2013 = (a^2015 + b^2015)/(c^2015 + d^2015)
Cho a,b,c là các số khác 0 thỏa mãn \(\frac{a^{2015}}{b^{2017}+c^{2019}}\)=\(\frac{b^{2017}}{a^{2015}+c^{2019}}\)=\(\frac{c^{2019}}{a^{2015}+b^{2017}}\)
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của a,b,c
S=\(\frac{b^{2017}+c^{2019}}{a^{2015}}\)+\(\frac{a^{2015}+c^{2019}}{b^{2017}}\)+\(\frac{a^{2015}+b^{2017}}{c^{2019}}\)
Giúp với ạ
cho 3 số thực a,b,c thỏa mãn a/2015=b/2016=c/2017
chứng minh rằng: 4(a-b)(b-c)=(c-a)2
a) Cho \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-yz}{2b}=\dfrac{ay-2bx}{3c}\)
Chứng minh rằng \(x:y:z=a:2b:3c\) ( biết biểu thức có ý nghĩa )
b) Cho dãy tỉ số bằng nhau \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=........=\dfrac{a_{2014}}{a_{2015}}\)
Chứng minh rằng \(\dfrac{a_1}{a_{2015}}=\left(\dfrac{a_1+a_2+a_3+.....+a_{2014}}{a_2+a_3+a_4+.......+a_{2015}}\right)^{2014}\) ( số 1-2015 là số thứ tự )
CMR.A=2012^4n+2013^4n+2014^4n+2015^4n ko là SỐ CHÍNH PHƯƠNG với mọi số nguyên dương n
mn giúp mik với
Cho ba số tự nhiên a, b, c; mỗi số gồm ba chữ số và được viết bởi các chữ số 1; 2; 3; 4; 5. Tìm ba số a, b, c biết rằng chúng tỉ lệ với các số 1; 3; 5.
cho a, b, c, d là những số nguyên chứng minh rằng nếu a-b chia hết cho c thì số nguyên t để a=b+ct và ngược lại
a)cho a1;a2;...;a2015 là các số nguyên và b1,b2,...,b2015 cũng là các số nguyên ấy nhưng viết theo thứ tự khác CMR:tích
(a1-b1)(a2-b2)....(a2015-b2015)\(⋮\)2
b)cho ba số a,b,c thỏa mãn a+b+c=0 và-1<a\(\le b\le c\)<1
CMR:a2+b2+c2<2
tổng các lũy thừa bậc 3 của 3 số nguyên là -1009. Biết rằng tỉ số giữa số thứ nhất với số thứ 2 là 2/3, tỉ số giữa số thứ nhất và số thức ba là 4/9. Tìm ba số đó