\(3x^2\cdot x^{n+2m}\cdot x\cdot y\cdot y^{m-3}\)
\(=3x^{2+n+2m+1}\cdot y^{1+m-3}=3x^{2m+n+3}y^{m-2}\)
\(12\left(xy\right)^8x^7\cdot y^{4-m}=12x^8y^8\cdot x^7y^{4-m}=12x^{15}y^{12-m}\)
Để hai đơn thức đồng dạng thì \(\left\{{}\begin{matrix}m-2=12-m\\2m+n+3=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=7\\n+14=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=7\\n=-2\end{matrix}\right.\)