Chứng minh rằng:
a) \(a^2+b^2-2ab\ge0\)
b) \(\dfrac{a^2+b^2}{2}\ge\left(a+1\right)^2\)
c) \(a\left(a+2\right)< \left(a+1\right)^2\)
d) \(M^2+N^2+2\left(M+N\right)\)
E\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
(Giúp em với ạ,... Em đang cần gấp lắm ạ)
Cho hàm số y =\(\dfrac{2x-1}{x+2}\) (C) và đường thẳng d : y = mx - 2 . tìm m để (C) cắt d tại hai điểm phân biệt A , B sao cho I ( 2 ;0 ) là trung điểm của AB
cho a,b,c >0, và \(a^2+b^2+c^2=3\):
CMR: \(\dfrac{a^2+3ab+b^2}{\sqrt{6a^2+8ba+11b^2}}+\dfrac{a^2+3ab+c^2}{\sqrt{6a^2+8ca+11c^2}}+\dfrac{c^2+3cb+b^2}{\sqrt{6c^2+8ca+11b^2}}\) \(\leq\) 3
Hàm số y= \(\dfrac{x^2-7x+8}{x^2-3x+1}\) có tập xđ D = R\{a,b}; a khác b Tính gtri biểu thức Q = \(a^3+b^3-4ab\) Mn giúp em với ạ
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}-7x+3y=-5\\5x-2y=4\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}4x-2y=6\\-2x+y=-3\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,3x-0,2y=0,4\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{2}{3}x-\dfrac{5}{9}y=\dfrac{4}{3}\end{matrix}\right.\)
phân tích thành nhân tử:
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
Hãy viết điều kiện của mỗi phương trình :
a) \(\sqrt{-3x+2}=\dfrac{2}{x+1}\)
b) \(\sqrt{x-2}+x=3x^2+1-\sqrt{-x-4}\)
c) \(\dfrac{3x+5}{\sqrt{3x^2+6x+11}}=\sqrt{2x+1}\)
d) \(\dfrac{\sqrt{x+4}}{x^2-9}=x+2\)
Giải các phương trình vô tỉ sau:
a) \(\dfrac{9}{x^2}\)+ \(\dfrac{2x}{\sqrt{2x^2+9}}\)= 1
b) x+\(\dfrac{x}{\sqrt{x^2-1}}\)= \(\dfrac{35}{12}\)
Giải phương trình :
a. \(\dfrac{3x+4}{x-2}-\dfrac{1}{x+2}=\dfrac{4}{x^2-4}+3\)
b. \(\dfrac{3x^2-2x+3}{2x-1}=\dfrac{3x-5}{2}\)
c. \(\sqrt{x^2-4}=x-1\)