hình, bn tự vẽ nhé!
Giải:
a/ Xét t/g ADE và t/g CFE có:
AE = CE (gt)
\(\widehat{AED}=\widehat{CEF}\) (ddoois ddinhr)
DE = FE (gt)
=> t/g ADE = t/g CFE (c.g.c)
=> AD = CF
mà DB = AD (gt)
=> DB = CF (đpcm)
b/ Ta có: t/g ADE = t/g CFE (ý a)
=> \(\widehat{DAE}=\widehat{FCE}\) (2 góc tương ứng)
mà 2 góc này so le trong
=> AB // CF
=> \(\widehat{BDC}=\widehat{FCD}\) (so le trong)
\(\widehat{BCD}=\widehat{FDC}\) (so le trong)
Xét t/g BDC và t/g FCD có:
\(\widehat{BDC}=\widehat{FCD}\left(cmt\right)\)
CD : cạnh chung
\(\widehat{BCD}=\widehat{FDC}\left(cmt\right)\)
=> t/g BDC = t/g FCD (g.c.g)(đpcm)
c/ Ta có: \(\widehat{BCD}=\widehat{FDC}\) (đã cm)
mà 2 góc này ở vị trí so le trong
=> DE // BC (đpcm)
Vì t/g BDC = t/g FCD (ý b)
=> BC = FD
mà DE = EF = \(\frac{1}{2}\) FD
=> DE = EF = \(\frac{1}{2}BC\)
=> DE = \(\frac{1}{2}BC\left(đpcm\right)\)
Bạn vào trang web /hoi-dap/question/158621.html