Ta có:
\(\left(1-a\right)\left(1-c\right)\left(1-b\right)4\le\left(\dfrac{2-a-c}{2}\right)^2\left(1-b\right)4=\left(2b+a+c\right)\left(2b+a+c\right)\left(1-b\right)\)
\(\le\left(a+2b+c\right)\left(\dfrac{a+b+c+1}{2}\right)^2=a+2b+c\)
Ta có:
\(\left(1-a\right)\left(1-c\right)\left(1-b\right)4\le\left(\dfrac{2-a-c}{2}\right)^2\left(1-b\right)4=\left(2b+a+c\right)\left(2b+a+c\right)\left(1-b\right)\)
\(\le\left(a+2b+c\right)\left(\dfrac{a+b+c+1}{2}\right)^2=a+2b+c\)
cho a b c dương a^2 + b^2+ c^2 = \(\dfrac{7}{4}\) chứng minh \(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}< \dfrac{1}{abc}\)
Cho a, b, c > 0 và abc = 1. Chứng minh rằng \(\dfrac{1}{a^2.\left(b+c\right)}+\dfrac{1}{b^2.\left(c+a\right)}+\dfrac{1}{c^2.\left(a+b\right)}\ge\dfrac{3}{2}\)
Cho a,b,c > 0 và \(a^2+b^2+c^2=1\)
Chứng minh rằng : \(4\le\sqrt{a^4+b^2+c^2+1}+\sqrt{a^2+b^4+c^2+1}+\sqrt{a^2+b^2+c^4+1}\le3\sqrt{2}\)
Cho a,b,c>0 thỏa abc=1. Chứng minh :
\(\dfrac{a}{\left(a+1\right)^2}+\dfrac{b}{\left(b+1\right)^2}+\dfrac{c}{\left(c+1\right)^2}-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\le\dfrac{1}{4}\)
Chứng minh (1-a)(1-b)(1-c)\(\ge\)8abc. Với mọi a,b,c>0 và a+b+c=1
1/cho số a >0 tìm GTNN của P = 2a +\(\frac{4}{a}\)+\(\frac{16}{a+2}\)
2/ cho a,b,c là số thực ϵ [0;\(\frac{1}{4}\)) chứng minh:
\(\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
3/ cho các số dương a,b,c tỏa abc = 1. Chứng minh
\(\frac{1}{a^2c+b^2c+1}+\frac{1}{b^2a+c^2a+1}+\frac{1}{c^2b+a^2b+1}\le1\)
Cho 3 số dương a,b,c thỏa a+b+c= 3 cmr:
√a +√b+ √c >=a+b+c.
Cho a,b,c>0: a+b+c=1. Chứng minh:
(1+a).(1+b).(1+c)>=8(1-a).(1-b).(1-c)
Cho a,b,c>0.Chứng minh rằng:
\(\dfrac{a+b}{a^2+b^2}+\dfrac{b+c}{b^2+c^2}+\dfrac{a+c}{a^2+c^2}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Help me?!
Cho a,b,c>0 Chứng minh rằng:
\(\dfrac{b+c}{a^2+bc}+\dfrac{c+a}{b^2+ca}+\dfrac{a+b}{c^2+ab}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)