Chương III : Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Phương Linh

Bài 53. (Chứng minh các dau hiệu nhận biết tam giác cân) (mỗi câu nên vẽ hình riêng). Cho tam giác ABC,

a) Chứng minh nếu góc B = góc C thì giác ABC cân.

b) Chứng minh nếu đưong cao AH còn là trung tuyến thì tam giác ABC cân

c) Chứng minh nếu đường cao AH còn là đường phân giác thì tam giác ABC cân

Nguyễn Lê Phước Thịnh
20 tháng 2 2020 lúc 17:35

a) Xét ΔABC có

cạnh đối diện với \(\widehat{ABC}\) là cạnh AC

cạnh đối diện với \(\widehat{ACB}\) là cạnh AB

\(\widehat{ABC}=\widehat{ACB}\)(gt)

nên AC=AB(định lí 2 về quan hệ giữa góc và cạnh đối diện trong tam giác)

Xét ΔABC có AB=AC(cmt)

nên ΔABC cân tại A(định nghĩa tam giác cân)

b) Xét ΔABH vuông tại H và ΔAHC vuông tại H có

BH=HC(do AH là đường trung tuyến ứng với cạnh BC)

AH là cạnh chung

Do đó: ΔABH=ΔAHC(hai cạnh góc vuông)

⇒AB=AC(hai cạnh tương ứng)

Xét ΔABC có AB=AC(cmt)

nên ΔABC cân tại A(định nghĩa tam giác cân)

c) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AH là cạnh chung

\(\widehat{BAH}=\widehat{CAH}\)(do AH là đường phân giác của ΔABC)

Do đó: ΔAHB=ΔAHC(cạnh góc vuông-góc nhọn kề)

⇒AB=AC(hai cạnh tương ứng)

Xét ΔABC có AB=AC(cmt)

nên ΔABC cân tại A(định nghĩa tam giác cân)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trn Quỳnh Như
Xem chi tiết
Võ Đặng Quang Minh
Xem chi tiết
Không
Xem chi tiết
mình kém lắm:(
Xem chi tiết
phạm khánh linh
Xem chi tiết
VN HAPPY
Xem chi tiết
Nguyễn Minh
Xem chi tiết
Bành Thị Mỡ Lợn
Xem chi tiết
pham gia loc
Xem chi tiết