Hai đoạn thẳng AB và CD cắt nhau tại E. Các tia phân giác của các góc ACD và góc ABD cắt nhau tại K. CMR: góc BKC= 1/2*(CAE+BDE)
Bài 2: Cho DABC vuông tại A có AB = 3cm, AC = 4cm. Vẽ tia phân giác BD của góc B (D thuộc cạnh AC). Từ D kẻ đường thẳng DE vuông góc với BC tại E. Các tia BA và ED cắt nhau tại F. a) Chứng minh DA = DE. b) Chứng minh DDAF = DDEC. c) Tính BC, AF. d) Chứng minh BD là trung trực của đoạn thẳng CF. MÌNH CẦN GẤP!!!!!!!!!
cho △ABC có góc B=600.Hai tia phân giác của góc A và góc C cắt BC ở D, cắt AB ở E và cắt nhau tại O. Trên AC lấy K sao cho AK = AE. CMR:
a)CK = CD
b)góc OED+ODE=600
Cho tam giác OHK vuông tại O. Tia phân giác của góc H cắt OK tại P Vẽ PQ vuông góc HK (Q thuộc HK) a/ Chứng minh : Tam giác HPQ = HPO b/ Hai đường thẳng OH và PQ cắt nhau tại E. So sánh HK và HE c/ Chứng minh rằng : Đường thẳng HP đi qua trung điểm của đoạn thẳng EK.
Bài 1. Cho ΔABC cân tại A. Trên tia đối của các tia BA và CA lấy hai điểm D và E sao cho BD = CE.
a) Chứng minh: DE // BC.
b) Chứng minh: BE = CD.
c) BE và CD cắt nhau tại K. Chứng minh: ΔKBC và ΔKDE cân.
d) Chứng minh: AK là tia phân giác của góc BAC.
e) Từ D, E kẻ DM, EN ⊥ BC. Chứng minh: DM = EN.
f) Chứng minh: ΔAMN cân.
Bài 2. Cho ΔABC có góc A nhọn. Kẻ tia Ax ⊥ AB (tia AC nằm giữa Ax và AB ). Kẻ tia Ay ⊥ AC (tia AB nằm giữa Ay và AC). Lấy điểm E và F lần lượt thuộc tia Ax và Ay sao cho AE = AB và AC = AF
a) Chứng minh: BF = CE.
b) Gọi M và N lần lượt là trung điểm của BF và CE. Chứng minh: ΔAMN vuông cân.
Bài 3. Trên cạnh BC của ΔABC lấy 2 điểm E và F sao cho BE = CF. Qua E và F vẽ các đường thẳng song song với BA chúng cắt cạnh AC tại G và H. Qua E vẽ đường thẳng song song với AC cắt AB tại D.
a) Chứng minh: AD = GE.
b) Chứng minh: ΔBDE = ΔFHC.
c) Chứng minh: AB = GE + FH.
Bài 4. Cho tam giác ABC vuông tại A và AB = 2AC. Gọi E là trung điểm của AB. Trên tia đối của tia AC lấy điểm D sao cho AB = AD. Chứng minh rằng: BC ⊥ DE.
Bài 5. Cho tam giác ABC vuông cân tại A, M là trung điểm cạnh BC, E là điểm nằm giữa M và C. Vẽ BH ⊥ AE tại H và CK ⊥ AE tại K. CMR:
a) BH = AK
b) ΔMBH = ΔMAK
c) ΔMHK vuông cân.
Cho tam giác ABC cân tại A. Kẻ đường thẳng vuông góc với AB tại B và kẻ đường thẳng vuông góc với AC tại C, hai đường thẳng này cắt nhau ở D.
⦁ Chứng minh: BD = DC
⦁ Từ B kẻ đường thẳng vuông góc với AC và cắt AC ở E. Chứng minh: BE // CD
⦁ Chứng minh BC là tia phân giác của góc EBD
⦁ Chứng minh AD vuông góc BC
Cho ΔABC vuông tại A, trên tia CA lấy điểm D sao cho AD = AC. Vẽ AE vuông góc BD tại E, vẽ AF vuông góc BC tại F.
a) Chứng minh ΔABE = ΔABF
b) Vẽ đường thẳng vuông góc BD tại D và đường thẳng vuông góc BC tại C, hai đường thẳng này cắt nhau tại M. Chứng minh ΔMDC cân
cho tam giác ABC vuông tại A, phân giác gó B bằng phân giác góc C cắt nhau tại điểm O.Gọi E và F là thứ tự hình chiếu của O trên Ab và AC. cho AB =6cm, AC = 8cm tính AE
Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Qua điểm E kẻ đường thẳng song song với BD cắt AC tại F Gọi K là giao điểm của DE và HF. Chứng minh rằng: KE=2KD