Cho ∆ABC. Trên cạnh AB lấy các điểm D, E sao cho: AD = DE = EB. Qua D, E lần lượt kẻ các đường thẳng song song với BC cắt AC tại M và N. a) Biết DM = 4 cm, AM = 2cm. Tính BC, AC? b) Biết EN = 3 cm. Tính B |
Cho hình bình hành ABCD. Trên các cạnh AB và BC của hình bình hành ABCD, lần lượt lấy các điểm E và F sao cho AE = CF. AF cắt CE tại P. Chứng minh rằng DP là tia phân giác của ADC
Cho hình thang ABCD (AB//CD. Đường thẳng m song song với AB, CD cắt các đoạn thẳng AD, BC lần lượt tại M,N,K. Chứng minh rằng:
a. AM/DM=AK/CK=BN/CN
b.AM/AD=BN/BC
Cho hình chữ nhật ABCD, trên đường chéo BD lấy điểm P, gọi M là điểm đối xứng của C qua P.a) AMDB là hình gì? vì sao?b) E, F lần lượt là hình chiếu của M trên AD, AB. Cm: EF//AC và E, F, P thẳng hàng.c) Chứng minh tỉ số các cạnh hình chữ nhật MEAF không phụ thuộc vào vị trí của Pd) Giả sử CP vuông góc với BD. CP = 2,4cm; PD/PB = 9/16. Tính các cạnh của hình chữ nhật.
Cho hình thang ABCD ( AB//CD) , một đường thẳng song song với đáy cắt cạnh bên AD,BC lần lượt ở E và F
Chứng minh rằng ED/AD = FC/BC
1.Cho tam giác vuông cân ABCcos góc C= 90 độ. Từ C kẻ một tia vuông góc với trung tuyền AM cắt AB ở D. Hãy tính tỉ số ED/DA.
2. cho điểm E thuộc cạnh AC của tam giác ABC. Qua B kẻ một đường thẳng I. Đường thẳng qua E và song song với BC cắt I tại N. Đường thẳng qua E và song song với AB cắt I tại M. Cm AN//CM
3.Cho hình thang ABCD có BC//AD . Trên AC kéo dài lấy 1 điểm P tùy ý. Dường thẳng qua P và trung điểm của BC cắt AB tại M và đường thẳng qua P và trung điểm của AD cắt CD tại N . CMR MN//AD
4. Tứ giác ABCD có M, N lần lượt là trung điểm của các đường chéo AC và BD. Gọi G là trọng tâm Tam giác ABC, nối GC cắt MN tại O. Chứng minh OC=3OG
5. Cho hình thang ABCD ) AB//CD) với AB=a; CD=b. Gọi I là giao điểm của hai đương chéo. Đường thẳng qua I và song song AB cắt hai cạnh bên tại E và F. CMR: EF=\(\frac{2ab}{a-b}\)
6. Hình bình hành ABCD. Gọi M là một điểm trên đường chéo AC. VẼ ME vuông góc với AB và MF vuông góc với AD. CMR\(\frac{ME}{MF}\)=\(\frac{AD}{AB}\)
Cho hình thang ABCD (AB // CD). Một đường thẳng song song với AB
lần lượt cắt các đoạn thẳng AD, BD, AC, BC tại M, N, P, Q.
a/ Chứng minh MN = PQ.
b/ Gọi E là giao điểm của AD và BC, F là giao điểm của AC và BD.
Chứng minh đường thẳng EF đi qua trung điểm của AB và DC.
Chỉ cần ý b thôi nha
Câu 6. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi M là trung điểm của AC. Đường thẳng HM cắt đường thẳng AB tại điểm E. Lấy điểm F sao cho M là trung điểm của EF. 1 Chứng minh AECF là hình bình hành. 2 Qua F kẻ đường thẳng song song với AH cắt AC kéo dài tại K. Chứng minh AH FK = AC EF . 3 Qua H kẻ đường thẳng song song với AB cắt AF tại Q. Gọi P là giao điểm của HC và FK. Chứng minh P Q ∥ AC. 4 Gọi N là trung điểm của AF và D là giao điểm của P Q với F C. Chứng minh ba điểm K, D, N thẳng hàng . giups voi a