a: Xét ΔEAD có
EH là đường trung tuyến
EC=2/3EH
Do đó: C là trọng tâm của ΔAED
b: Vì C là trọng tâm của ΔAED
nên M là trung điểm của DE
Xét ΔDAE có
H là trung điểm của AD
M là trung điểm của DE
Do đó: HM là đường trung bình
=>HM//AE
a: Xét ΔEAD có
EH là đường trung tuyến
EC=2/3EH
Do đó: C là trọng tâm của ΔAED
b: Vì C là trọng tâm của ΔAED
nên M là trung điểm của DE
Xét ΔDAE có
H là trung điểm của AD
M là trung điểm của DE
Do đó: HM là đường trung bình
=>HM//AE
Cho tam giác ABC cân tại A, AH vuông góc với BC. Trên tia đối tia HA lấy D sao cho HD = HA. Trên tia đối tia CB lấy E sao cho CE = CB.
a) Chứng minh C là trọng tâm của tam giác ADE.
b) Tia AC cắt DE tại M. Chứng minh AE // HM.
Cho tam giác ABC cân tại A đường cao AH. Trên tia đối của tia HA lấy điểm D sao cho HD=HA. Trên tia đối của tia CB lấy E sao cho CE=CB
a, Cm C là trọng tâm của tam giác ADE
b, Tia CA cắt DE ở M. Cm AE//HM
Cho tam giác ABC vuông góc tại đỉnh A, đường cao AH. Từ H kẻ HM vuông góc với AC và trên tia đối HM lấy điểm E sao cho MH=EM. Kẻ HN vuông góc với AB và trên tia đối của tia NH lấy điểm D sao cho NH=ND
a) Chứng minh 3 điểm D, A, E thẳng hàng
b) Chứng minh MN//DE
c) Chưng minh BD//CE
d) Chưng minh tam giác DHE là tam giác đều
P/s Giải nhanh giùm vs đg gấp
Cho tg ABC cân tại A đường cao AH. Trên tia đối của tia HA lấy điểm D sao cho HD = HA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB
CMR: C là trọng tâm của tg ADC
Bài 4 : Cho tam giác ABC cân ( AB = AC ) ; Trên tia đối của tia BC lấy điểm D , trên tí đối của tia CB lấy điểm E sao cho BD = CE
a. Chứng minh : AD = AE
b. Lấy M là trung điểm của BC ; Chứng minh AM là tia phân giác góc DAE
Cho tam giác ABC; góc A=90 độ(AB > AC). Gọi M là trung điểm của BC. Trên tia đối tia MA lấy điểm D sao cho MD = MA. Vẽ AH vuông góc BC tại H trên tia đối HA lấy E sao cho HE = HA. Chứng minh rằng:
a) CD vuông góc với AC
b) BD = CE
c) BD = CE
d) Cho góc MAE = góc MEA và góc MDE = góc MED. Chứng minh AE vuông góc ED
Cho tam giác ABC,trên tia đối của tia AB lấy điểm D và trên tia đối của tia AC lấy E sao cho AD = AB ; AE=AC
a ) Chứng minh DC = DE
b ) chứng minh BC // DE
c ) đường thẳng xy qua A cắt BC ; DE lần lượt tại M và N. Chứng minh A là trung điểm của MN.
Cho tam giác ABC(góc A =90độ), đường cao AH, trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho DM=MA. Trên tia đối của tia CD lấy điểm I sao cho CI=CA. Qua I vẽ đường thẳng song song với AC cắt AH tại E. Chứng minh rằng : AE= BC.
Bài 1: cho tam giác ABC có 3 góc đều nhọn , đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA=HD.
a/Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và ACD.
b/Chứng minh CA= CD và BD=BA
C/cho góc ACB= 45o . Tính góc ADC
D/ Đường cao AH có phải thêm điều kiện gì thì AB//CD
Bài 2: cho tam giác ABC có góc A= 90o . đường thẳng AH vuông góc với BC. Trên đường vuông góc với BC lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD
a/ chứng minh ΔAHD=ΔDBH
b/ Hai đường thẳng AB và DH có song song không? vì sao?
c/Tính góc ACB biết góc BAH=35o
Bài 3: Cho tam giác ABC với AB=AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN=BM
a/ chứng minh ΔABI=ΔACI và AI là tia phân giác góc BAC
b/ chứng minh AM=AN
c/ chứng minh AI vuông góc với BC
Bài 4: Cho góc xOy nhọn, có Ot là Tia phân giác . Lấy điểm A trên Ox, điểm B trên Oy sao cho AH=BD
a/Chứng Minh: ΔAOM=ΔBOM
b/chứng minh:AM=MB
c/ lấy diểm H trên tia Ot. Qua H vẽ đường thẳng song song với AB, dường thẳng này cắt Ox tại C, Cắt Oy tại D.Chứng minh:OH vuông góc với CD
Bài 5:Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ax lấy điểm c, trên tia By lấy điểm D sao cho AC=BD
a/ chứng minh : AD=BC
b/ Gọi E là Giao điểm ADvaf BC. Chứng minh :ΔEAC=ΔEBD
c/chứng minh: OE là phân giác của xOy
Bài 6: ChoΔABC có AB=AC. gọi D là trung điểm của BC. chứng minh rằng
a)ΔADB=ΔADC
b) AD vuông góc với BC