\(=\sqrt{5+7+3+2\sqrt{35}+2\sqrt{15}+2\sqrt{21}}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{5}+\sqrt{7}\right)^2}\)
\(=\sqrt{3}+\sqrt{5}+\sqrt{7}\)
\(=\sqrt{5+7+3+2\sqrt{35}+2\sqrt{15}+2\sqrt{21}}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{5}+\sqrt{7}\right)^2}\)
\(=\sqrt{3}+\sqrt{5}+\sqrt{7}\)
Tính
\(\sqrt{15+2\sqrt{35}+\sqrt{60}+\sqrt{84}}\)
rút gọn
a) \(\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}\)
b) \(\left(\sqrt{7-3\sqrt{5}}\right)\left(7+3\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{10}\right)\)
c) \(\left(\sqrt{14}-\sqrt{10}\right)\left(6-\sqrt{35}\right)\left(\sqrt{6+\sqrt{35}}\right)\)
Tính: \(15\sqrt{x+3}-\sqrt{9x+27}=2\sqrt{4x+12}\)
rút gọn biểu thức
\(B=21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{15}\)
Giải phương trình:
1. \(\sqrt{\dfrac{42}{5-x}}+\sqrt{\dfrac{60}{7-x}}=6\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
3. \(x^2+x+12\sqrt{x+1}=36\)
4. \(\sqrt{x+2}-\sqrt{x-6}=2\)
5. \(\sqrt[3]{x-1}-\sqrt[3]{x-3}=\sqrt[3]{2}\)
6. \(5\sqrt{1+x^3}=2\left(x^2+2\right)\)
6. \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
tính \(\sqrt{A}\)
a)A= 13 - 2\(\sqrt{42}\)
b)A= 46 + 6\(\sqrt{5}\)
c)A= 12 - 3\(\sqrt{15}\)
cứu tui
Rut gon bieu thuc:
a) (2-\(\sqrt{3}\))\(\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)
b) \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
c) \(\frac{\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}}{\sqrt{7+2\sqrt{11}}}-\sqrt{3-2\sqrt{2}}\)
\(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}-\sqrt{6}}\)
a) \(\sqrt{243}-\dfrac{1}{2}\sqrt{12}-2\sqrt{75}+2\sqrt{27}\)
b) \(\left(2+\sqrt{6}\right)\sqrt{7-4\sqrt{3}}\)
c) \(\sqrt{\dfrac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}.\left(3\sqrt{2}+\sqrt{14}\right)\)
Dạng 1: Thực hiện phép tính, tính giá trị, rút gọn biểu thức số.
\(A=\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
\(B=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(C=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}\left(\frac{\sqrt{3}}{2-\sqrt{6}}+\frac{\sqrt{3}}{2+\sqrt{6}}\right)-\)\(\frac{1}{\sqrt{2}}\)
\(D=\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}+\frac{12}{\sqrt{6}-3}-\sqrt{6}\)
\(E=\left(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}\right)\)\(.\frac{1}{\sqrt{3}+5}\)