a: Xét ΔMNP có
\(\dfrac{MA}{MN}=\dfrac{MB}{MP}\)
Do đó: AB//NP
Xét tứ giác NABP có AB//NP
nên NABP là hình thang
mà \(\widehat{ANP}=\widehat{BPN}\)
nên NABP là hình thang cân
a: Xét ΔMNP có
\(\dfrac{MA}{MN}=\dfrac{MB}{MP}\)
Do đó: AB//NP
Xét tứ giác NABP có AB//NP
nên NABP là hình thang
mà \(\widehat{ANP}=\widehat{BPN}\)
nên NABP là hình thang cân
Cho hình thoi MNPQ có góc M bằng 600. Gọi A, B, C, D lần lượt là trung điểm của MN, MQ, PQ, PN. Gọi I là giao điểm của MP và NQ.
a. Tứ giác ABCD là hình gì?
b. Chứng minh Tam giác NBC là tam giác đều.
c. Gọi E là điểm đối xứng của B qua A, gọi F là trung điểm của NB.
Chứng minh E đối xứng với Q qua F.
d. Chứng minh IC vuông góc với NB.
e. Cho điểm S di chuyển trên MP. Tìm vị trí của điểm S để SB +SQ nhỏ nhất.
Cho hình thoi MNPQ có góc M bằng 600. Gọi A, B, C, D lần lượt là trung điểm của MN, MQ, PQ, PN. Gọi I là giao điểm của MP và NQ.
a. Tứ giác ABCD là hình gì?
b. Chứng minh Tam giác NBC là tam giác đều.
c. Gọi E là điểm đối xứng của B qua A, gọi F là trung điểm của NB.
Chứng minh E đối xứng với Q qua F.
d. Chứng minh IC vuông góc với NB.
e. Cho điểm S di chuyển trên MP. Tìm vị trí của điểm S để SB +SQ nhỏ nhất.
Bài 1. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là trung điểm của AB.
a) Chứng minh tứ giác BKIC là hình thang cân.
b) Lấy N là điểm đối xứng với M qua I. Tứ giác AMCN là hình gì ? Vì sao ?
c) Chứng minh ba đường thẳng AM, BN và IK cùng đi qua một điểm.
cho tam giác ABC vuông tại A,trung tuyết AD .kẻ DM vuông góc với AB (M thuộc AB) kẻ DN vuông góc với AC (N thuộc AC )
a. tứ giác ANDM là hình gì ? vì sao ?
b. trên tia đối của tia ND lấy điểm E sao cho ND = NE .chứng minh AECD là hình thoi
c.l tam giác ABC có điều kiện gì để tam giác ANDM là hình vuông
Cho tam giác abc cân tại a,trung tuyến am,i là trung điểm ac,k là trung điểm ab,e là trung điểm am.Gọi n là điểm đối xứng của m qua i a)chứng minh akmi là hình thoi b) tứ giác amcn là hình gì?vì sao? c) chứng minh e là trung điểm bn
Cho tam giác ABC vuông tại A , có AB = 3cm , AC=4cm . D là một điểm thuộc cạnh BC , I là trung điểm của AC , E đối xứng với D qua I
a. Tứ giác AECD là hình gì
b. Điểm D ở vị trí nào BC thì AECD là hình chữ nhật ? Giải thích và vẽ hình minh họa.
c. Điểm D ở vị trí nào BC thì AECD là hình thoi? Giải thích và vẽ hình minh họa. Tính đọ dài các cạnh của hình thoi.
Bài 5. Cho tam giác ABC nhọn (AB<AC). Trên cạnh AB, AC lấy các điểm D và E sao cho BD =
CE. Gọi M, N, P, Q là trung điểm các cạnh BC,CD,DE,BE.
1) Chứng minh tứ giác MNPQ là hình thoi.
2) Đường thẳng MP cắt cạnh AC tại F.Chứng minh AB+AF = CF và MP song song với phân
giác của góc BAC
3) Đường thẳng NQ cắt AB, AC tại H,K. Chứng minh tam giác AHK cân tại A
giúp câu bc vs ạ
Bài 1: Cho tam giác ABC, gọi M,N lần lượt là trung điểm của AB, AC.
a)Chứng minh MN // BC
b)Gọi D là điểm bất kỳ thuộc cạnh BC ( D khác B,C), AD cắt MN tại I. Chứng
minh I là trung điểm của AD.
Bài 2: Cho tam giác ABC cân tại A, M là trung điểm của BC. Kẻ Mx// AC cắt AB tại E, kẻ My// AB cắt AC tại F. Chứng minh rằng:
1)E,F là trung điểm của AB, AC
2) FE = 1/2 BC
3) ME=MF, AE=FA
cho tam giác abc vuông tại a có ab<ac . gọi m là trung điểm của bc , kẻ md vuông góc với ab tại d , me vuông góc với ac tại e
a) chứng minh am = de
b) chứng minh tứ giác dmce là hình bình hành
c) gọi ah là đường cao của tam giác abc (h thuộc bc) . chứng minh tứ giác dhme là hình thang cân