Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huỳnh Thị Thu Uyên

Bài 2 : Tìm x,y biết rằng : ( 1/2x -5)20 + ( y2 -1/4)10 <  0

Isolde Moria
14 tháng 9 2016 lúc 11:59

Ta có :

\(\begin{cases}\left(\frac{1}{2x}-5\right)^{20}\ge0\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\end{cases}\)

Mà : \(\left(\frac{1}{2x}-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)

\(\Rightarrow\begin{cases}\left(\frac{1}{2x}-5\right)^{20}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{cases}\)

(+) \(\frac{1}{2x}-5=0\)

\(\Rightarrow x=\frac{1}{10}\)

(+) \(y^2-\frac{1}{4}=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}y=\frac{1}{2}\\y=-\frac{1}{2}\end{array}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(\frac{1}{10};\frac{1}{2}\right);\left(\frac{1}{10};-\frac{1}{2}\right)\right\}\)

soyeon_Tiểubàng giải
14 tháng 9 2016 lúc 12:02

Do \(\left(\frac{1}{2}x-5\right)^{20}\ge0;\left(y^2-\frac{1}{4}\right)^{10}\ge0\)

=> \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)

Mà theo đề bài: \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)

=> \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}=0\)

=> \(\begin{cases}\left(\frac{1}{2}x-5\right)^{20}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{cases}\)=> \(\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\)=> \(\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\)=> \(\begin{cases}x=10\\y\in\left\{\frac{1}{2};\frac{-1}{2}\right\}\end{cases}\)


Các câu hỏi tương tự
Nguyễn Thị Huệ
Xem chi tiết
Trang
Xem chi tiết
ღAlice Nguyễn ღ
Xem chi tiết
Nguyễn Thị Thanh Phương
Xem chi tiết
kimtaeyeon
Xem chi tiết
Trần Nguyễn Bảo Quyên
Xem chi tiết
Nguyen Thi Thanh Thao
Xem chi tiết
Van Tử Lam
Xem chi tiết
Hiền Thảo Nguyễn
Xem chi tiết