Bài 2. Cho tam giác ABC có Â = 60 độ, M là điểm nằm giữa B và C. Vẽ điểm E sao cho AB là đường trung trực của ME, điểm F sao cho AC là đường trung trực của MF.
a) Chứng minh trung trực của EF đi qua A.
b) Chứng minh BE + CF = BC
c) Tính các góc của tam giác AEF.
d) EF cắt AB, AC lần lượt tại I, K. Chứng minh MA là phân giác của góc IMK.
e) Phải cho góc A của tam giác ABC bằng bao nhiêu độ để A là trung điểm của EF.
a) Ta có: AB là đường trung trực của EM(gt)
⇒A nằm trên đường trung trực của EM
hay AE=AM(tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AC là đường trung trực của MF(gt)
⇒A nằm trên đường trung trực của FM
hay AM=AF(tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AE=AF
hay A nằm trên đường trung trực của EF(tính chất đường trung trực của một đoạn thẳng)
b) Ta có: AB là đường trung trực của EM(gt)
⇒B nằm trên đường trung trực của EM
hay BE=BM(tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: AC là đường trung trực của MF(gt)
⇒C nằm trên đường trung trực của FM
hay CM=CF(tính chất đường trung trực của một đoạn thẳng)(4)
Ta có: BM+CM=BC(M nằm giữa B và C)(5)
Từ (3), (4) và (5) suy ra BC=BE+CF(đpcm)
c) Xét ΔABE và ΔABM có
AE=AM(cmt)
AB là cạnh chung
BE=BM(cmt)
Do đó: ΔABE=ΔABM(c-c-c)
⇒\(\widehat{EAB}=\widehat{BAM}\)(hai góc tương ứng)
mà tia AB nằm giữa hai tia AE,AM
nên AB là tia phân giác của \(\widehat{EAM}\)
hay \(\widehat{EAM}=2\cdot\widehat{BAM}\)(6)
Xét ΔAMC và ΔAFC có
AM=AF(cmt)
AC chung
MC=CF(cmt)
Do đó: ΔAMC=ΔAFC(c-c-c)
⇒\(\widehat{MAC}=\widehat{FAC}\)(hai góc tương ứng)
mà tia AC nằm giữa hai tia AF,AM
nên AC là tia phân giác của \(\widehat{FAM}\)
hay \(\widehat{FAM}=2\cdot\widehat{CAM}\)(7)
Ta có: \(\widehat{BAM}+\widehat{CAM}=\widehat{BAC}\)(tia AM nằm giữa hai tia AB,AC)
hay \(\widehat{BAM}+\widehat{CAM}=60^0\)(8)
Ta có: \(2\cdot\widehat{BAM}+2\cdot\widehat{CAM}=\widehat{EAM}+\widehat{FAM}\)
hay \(2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)=\widehat{EAM}+\widehat{FAM}\)(9)
Từ (6),(7),(8) và (9) suy ra:
\(\widehat{EAM}+\widehat{FAM}=120^0\)(10)
Ta có: \(\widehat{EAM}+\widehat{FAM}=\widehat{FAE}\)(tia AM nằm giữa hai tia AE,AF)(11)
Từ (10) và (11) suy ra: \(\widehat{FAE}=120^0\)
Xét ΔAEF có AE=AF(cmt)
nên ΔAEF cân tại A(định nghĩa tam giác cân)
⇒\(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{EAF}}{2}\)(số đo của các góc ở đáy trong ΔAEF)
hay \(\widehat{AEF}=30^0\); \(\widehat{AFE}=30^0\)
Vậy: \(\widehat{FAE}=120^0\); \(\widehat{AEF}=30^0\); \(\widehat{AFE}=30^0\)