Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên cạnh BC lấy điểm E sao cho AE = BE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD và FC. Chứng minh rằng:
a) Tam giác ABD = Tam giác EBD
b) DE vuông góc với BC
c) BD là trung trực của đoạn thẳng AE
d) Ba điểm D , E , F thẳng hàng
e) Điểm D cách đều ba cạnh của tam giác AEI
Cho △ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D ∈ AC).Từ C kẻ CE vuông góc với AB (E∈AB)
a,CMR:\(OD=\dfrac{1}{2}BC\)
b,Trên tia đối của tia DE lấy N, trên tia đối của ED lấy M sao cho EM=DN. Chứng minh rằng △OMN là tam giác cân
Cho tam giác ABC có AB < AC. Trên AC lấy điểm D sao cho AB = AD. Tia phân giác của góc A cắt BC tại E.
a. Chứng minh: tam giác ABE = tam giác ADE
b. Cho AE cắt BD tại H. Chứng minh: AE vuông góc với BD tại H.
c. Trên tia đối của tia ED lấy điểm M sao cho EM = EC. Chứng minh: A, B, M thẳng hàng và BD // MC.
Cho tam giác ABC có AB < AC. Trên AC lấy điểm D sao cho AB = AD. Tia phân giác của góc A cắt BC tại E.
a. Chứng minh: tam giác ABE = tam giác ADE
b. Cho AE cắt BD tại H. Chứng minh: AE vuông góc với BD tại H.
c. Trên tia đối của tia ED lấy điểm M sao cho EM = EC. Chứng minh: A, B, M thẳng hàng và BD // MC.
(mng giải giúp em tới bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác ạ, cảm ơn mng nhiều)
Cho tam giác ABC vuông tại A. Đường phân giác BD. Vẽ DE vuông góc với BC (E thuộc BC)
a) Chứng minh: BAD = BED
b) DA < DC
c) Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Chứng minh DFC cân
d) Chung minh ba điểm F, D, E thẳng hàng.
Cho tam giác ABC có AB = AC. M là trung điểm của BC. Chứng minh:
a. Tam giác ABM = tam giác ACM, AM vuông góc với BC
b. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: AB//CD
c. Cho ME vuông góc với AB (E thuộc AB), MF vuông góc CD (F thuộc CD). Chứng minh: M là trung điểm của EF. 
Cho tam giác cân ABC (AB = AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC