a: Xét ΔBFC và ΔCEB có
BF=CE
\(\widehat{FBC}=\widehat{ECB}\)
BC chung
Do đó: ΔBFC=ΔCEB
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến ứng với cạnh đáy BC
nên AM là đường cao ứng với cạnh BC
Ta có: ΔBFC=ΔCEB
nên \(\widehat{BFC}=\widehat{CEB}\)
mà \(\widehat{CEB}=90^0\)
nên \(\widehat{BFC}=90^0\)
Xét ΔABC có
AM là đường cao ứng với cạnh BC
BE là đường cao ứng với cạnh AC
CF là đường cao ứng với cạnh AB
Do đó: AM,BE,CF đồng quy
a) Xét tam giác BFC và CEB ta có:
Góc FBC = góc ECB
BF = CE
BC cạnh chung
=> tam giác BFC = tam giác CEB (c-g-c)
a) Xét ΔBFC và ΔCEB có:
BF=EC(gt)
\(\widehat{FBC}=\widehat{ECB}\)(tam giác ABC cân tại A)
BC chung
=> ΔBFC=ΔCEB(c.g.c)
b) Xét tam giác ABC cân tại A có
AM là đường trung tuyến
=> AM là đường cao của tam giác ABC(1)
Ta có: ΔBFC=ΔCEB(cmt)
\(\Rightarrow\widehat{BFC}=\widehat{BEC}=90^0\)
=> CF là đường cao của tam giác ABC(2)
Từ (1),(2) và BE là đường cao của tam giác ABC
=> BE,,CF,AM đồng quy