Bài 2: Cho:
\(E=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
a) Tìm x để E xác định
b) Rút gọn E
c) Tìm x để E = 2
d) Tính gtri của E để \(x=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
a: ĐKXĐ: x>0; x<>1
b: \(E=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4\sqrt{x}\left(x-1\right)}{x-1}:\dfrac{x-1}{\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+4x\sqrt{x}-4\sqrt{x}}{x-1}\cdot\dfrac{\sqrt{x}}{x-1}\)
\(=\dfrac{4x^2}{\left(x-1\right)^2}\)
c: Để E=2 thì \(4x^2=2x^2-4x+2\)
\(\Leftrightarrow2x^2+4x-2=0\)
hay \(x\in\left\{-1+\sqrt{2};-1-\sqrt{2}\right\}\)