Bài 2: Cho biểu thức: A=\(\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
a) Rút gọn biểu thức A
b) Tính giá trị biểu thức A, với x=\(-\frac{1}{2}\)
c) Tìm giá trị cuả x để A<0
Bài 3: Cho phân thức: \(\frac{2x^2-4x+8}{x^3+8}\)
a) Với điều kiện nào của x thì giá trị của phân thức xác định
b) Hãy rút gọn phân thức
c) Tính giá trị của phân thức tại x=2
d) Tìm giá trị của x để giá trị của phân thức bằng 2
Bài 1 :
\(a.A=\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\left(ĐK:x\ne0;x\ne\pm3\right)\\ =\left(\frac{-\left(x-3\right)}{x+3}\cdot\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{\left(x+3\right)}\right)\cdot\frac{x+3}{3x^2}\\ =\left(-1+\frac{x}{x+3}\right)\cdot\frac{x+3}{3x^2}=\left(\frac{-\left(x+3\right)+x}{x+3}\right)\cdot\frac{x+3}{3x^2}\\ =\frac{-x-3+x}{3x^2}=\frac{-3}{3x^2}=\frac{-1}{x^2}\)
b) Tại \(x=\frac{-1}{2}\left(TMĐK\right)\)
\(A=\frac{-1}{\left(\frac{-1}{2}\right)^2}=-1:\left(\frac{1}{4}\right)=-1\cdot4=-4\)
c) Để \(A=\frac{-1}{x^2}< 0\) thì \(x^2>0\Rightarrow x>0\)
Vậy để A < 0 thì x > 0 \(\forall x\in R/x>0;x\ne3\)
Bài 2 :
a) Để giá trị của phân thức xác định thì :
\(x^3+8\ne0\Rightarrow x^3\ne-8\\ \Rightarrow x\ne-\sqrt[3]{8}\\ \Rightarrow x\ne-2\)
Vậy để giá trị phân thức được xác định thì \(x\ne-2\)
\(b.Đặt:B=\frac{2x^2-4x+8}{x^3+8}\left(x\ne-2\right)\\ =\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)
c) Tại x = 2 ( TMĐK ) thì :
\(B=\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)
\(d)\frac{2}{x+2}=2\Rightarrow2=2\left(x+2\right)\\ \Leftrightarrow2=2x+2\\ \Leftrightarrow2x=2-2\\ \Leftrightarrow2x=0\Rightarrow Phương.trình.vô.số.nghiệm\\ Vậy:S=\left\{x\in R/x\ne-2\right\}\)