Tam giác ABC cân tại A, gọi M là trung điểm của BC. Biết AM = 8cm, AB = 10cm
a) Tính độ dài BC
b) Chứng minh AM vuông góc BC
c) Từ điểm D nằm giữa A và M. Kẻ DE⊥AB (E∈AB); DF ⊥AC (F∈AC); Chứng minh: DE=DF
d) Qua A kẻ đường thẳng d song song BC. Gọi I, H lần lượt là giao điểm của DE, DF với đường thẳng d. Chứng minh tam giác DIK cân
e) Giả sử góc IDK = 130° tính góc DIK = ? góc DKI = ?
Cho tam giác cân ABC có AB = AC =5cm , BC = 8cm . Kẻ AH vuông góc với BC ( H ∈ BC )
a, chứng minh : HB = HC và ∠CAH = ∠BAH
b, tính độ dài AH
c, kẻ HD vuông góc AB ( D ∈ AB ) , kẻ HE vuông góc với AC ( E ∈ AC )
chứng minh DE //BC
Bài 2: Cho DABC vuông tại A có AB = 3cm, AC = 4cm. Vẽ tia phân giác BD của góc B (D thuộc cạnh AC). Từ D kẻ đường thẳng DE vuông góc với BC tại E. Các tia BA và ED cắt nhau tại F. a) Chứng minh DA = DE. b) Chứng minh DDAF = DDEC. c) Tính BC, AF. d) Chứng minh BD là trung trực của đoạn thẳng CF. MÌNH CẦN GẤP!!!!!!!!!
Bài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.
a) Chứng minh ∆MNP vuông
b) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.
Chứng minh ∆MNI = ∆KI
c) Tia IK cắt tia NM tại Q. Chứng minh KP = MQ
d) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cân
Bài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc với
BC tại D. Kẻ DE vuông góc với AB tại E, DF vuông góc với AC tại F.
a) Chứng minh ∆ADB = ∆ADC
b) Tính độ dài AC
c) Giả sử ̂ = 740
. Tính góc ABC
d) Chững minh DE = DF
e) Chứng minh AE = AF
f) Chứng minh DE //BC
Câu 8: Cho tam giác ABC vuông tại A, có góc B = 60o và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a/ Chứng minh: Δ ABD = Δ EBD.
b/ Chứng minh: ABE là tam giác đều.
c/ Tính độ dài cạnh BC.
Cho tam giác ABC vuông tại A . Tia phân giác góc B cắt AC tại D , tia phân giác góc C cắt AB tại E kẻ DH vuông góc với BC tại H, kẻ EK vuông góc với BC tại K a) Chứng minh BA=BH b) BD vuông góc với AH c) Chứng minh AB+AC=BC+HK d) Tính góc HAK
Bài 5: (3đ) Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC (H thuộc BC). a) Chứng minh ABH = ACH . b) Kẻ HM AB M AB ⊥ ( ) , kẻ HN AC N AC ⊥ ( ) . Chứng minh: MN // BC c) Trên tia đối của tia AB lấy E sao cho AB = AE, kẻ AD vuông góc với EC. Chứng minh AD vuông AH
cho ΔABC vuông tại A . Đường phân giác BD (D ∈ AC). Kẻ DE ⊥ BC (E ∈ BC)
a) Chứng minh ΔABD = ΔEBD
b) Chứng minh ΔADE cân và BD là trung trực của AE
c) So sánh AD và DC
d) Kẻ AH vuông góc với BC (H ∈ BC), AH cắt BD tại F. Chứng minh: AH // DE và ΔAFD cân
e) Chứng minh AE là tia phân giác của góc AHC