a x = \(\dfrac{-1}{12}\)
b x = \(\dfrac{-4}{3}\)
c x = \(\dfrac{-1}{6}\)
d x = \(\dfrac{-1}{4}\)
\(\left(4x+1\right)^2=\dfrac{4}{9}\)
\(\left(4x+1\right)=\perp\left(\dfrac{2}{3}\right)^2\)
\(\text{Vậy }4x+1=\dfrac{2}{3}\)
\(4x\) \(=\dfrac{2}{3}+\left(-1\right)=\dfrac{-1}{3}\)
\(x\) \(=\left(\dfrac{-1}{3}\right).\dfrac{1}{4}=\dfrac{-1}{12}\)
\(\text{hoặc }4x+1=\dfrac{-2}{3}\)
\(4x\) \(=\left(\dfrac{-2}{3}\right)+\left(-1\right)=\dfrac{-5}{3}\)
\(x\) \(=\left(\dfrac{-5}{3}\right).\dfrac{1}{4}=\dfrac{-5}{12}\)
\(\Rightarrow x\in\left\{\dfrac{-1}{12};\dfrac{-5}{12}\right\}\)
\(\left(3x-1\right)^2=25\)
\(\left(3x-1\right)^2=\perp\left(5\right)^2\)
\(\text{Vậy }3x-1=5\)
\(3x\) \(=5+1=6\)
\(x\) \(=6:3=2\)
\(\text{hoặc }3x-1=-5\)
\(3x\) \(=\left(-5\right)+1=-4\)
\(x\) \(=\left(-4\right):3=\dfrac{-4}{3}\)
\(\Rightarrow x\in\left\{2;\dfrac{-4}{3}\right\}\)
\(\left(x-\dfrac{1}{3}\right)^2=\dfrac{1}{4}\)
\(\left(x-\dfrac{1}{3}\right)^2=\perp\left(\dfrac{1}{2}\right)^2\)
\(\text{Vậy }x-\dfrac{1}{3}=\dfrac{1}{2}\)
\(x\) \(=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\text{hoặc }x-\dfrac{1}{3}=\dfrac{-1}{2}\)
\(x\) \(=\left(\dfrac{-1}{2}\right)+\dfrac{1}{3}=\dfrac{-1}{6}\)
\(\Rightarrow x\in\left\{\dfrac{5}{6};\dfrac{-1}{6}\right\}\)
\(\left(4x-3\right)^2=16\)
\(\left(4x-3\right)=\perp\left(4\right)^2\)
\(\text{Vậy }4x-3=4\)
\(4x\) \(=4+3=7\)
\(x\) \(=7:4=\dfrac{7}{4}\)
\(\text{hoặc }4x-3=-4\)
\(4x\) \(=\left(-4\right)+3=-1\)
\(x\) \(=\left(-1\right):4=\dfrac{-1}{4}\)
\(\Rightarrow x\in\left\{\dfrac{7}{4};\dfrac{-1}{4}\right\}\)