\(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{6}\right|=4x\)
Ta có:
\(\left\{{}\begin{matrix}\left|x+\dfrac{1}{2}\right|\ge0\\\left|x+\dfrac{1}{3}\right|\ge0\\\left|x+\dfrac{1}{6}\right|\ge0\end{matrix}\right.\) \(\Rightarrow\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{6}\right|\ge0\)
\(\Rightarrow4x\ge0\)
\(\Rightarrow x+\dfrac{1}{2}+x+\dfrac{1}{3}+x+\dfrac{1}{6}=4x\)
\(\Rightarrow3x+1=4x\)
\(\Rightarrow x=1\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{6}\right|\ge0\)
\(\Rightarrow4x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{2}>0\\x+\dfrac{1}{3}>0\\x+\dfrac{1}{6}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{1}{2}\right|=x+\dfrac{1}{2}\\\left|x+\dfrac{1}{3}\right|=x+\dfrac{1}{3}\\\left|x+\dfrac{1}{6}\right|=x+\dfrac{1}{6}\end{matrix}\right.\)
Thay vào ta được:
\(x+\dfrac{1}{2}+x+\dfrac{1}{3}+x+\dfrac{1}{6}=4x\)
\(\Rightarrow x=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}=1\)
Vậy...................
Chúc bạn học tốt!!!