Một ô tô xuất phát từ A để đến B với vận tốc 40km/h,cùng lúc đó một xe máy xuất phát từ B để đến A với vận tốc 30km/h.Sau bao lâu hai xe gặp nhau.Biết quãng đường AB dài 140km.
Bài 3: Cho tam giác ABC cân tại A, Gọi D; E thứ tự là trung điểm của AB; AC.
a. Chứng minh rằng BCED là hình thang cân
b. Biết BC = 24 cm. Tính độ dài đường trung bình của hình thang BCED
c. Gọi F là trung điểm của BE; K là trung điểm của DC. Tính FK
Cho tam giác ABC vuộng tại A có AB=6cm.Gọi M,I lần lược là trung điểm của cạnh BC,AC.
a/Chứng minh tứ giác MAIB là hình thang vuông và tính độ dài MI.
b/Từ A vẽ đường thẳng song song với BC và cắt MI tại N.Chứng min tứ giác ANMB là hình bình hành và tứ giác ANCM là hình thoi.
c/Trên nửa mặt phẳng có bờ AC chứa điểm B,vẽ tia Cx//AB. Trên tia Cx lấy điểm Q sao cho CQ= 6cm. Chứng minh :3 điểm A,M,Q thẳng hàng.
Cho hình thang cân ABCD (AB//CD) có góc D=45 độ. Vẽ AH vuông góc với CD tại H. Lấy điểm E đối xứng với D qua H a. C/m: ABCE là hình bình hành b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. C/m: H là trung điểm của AF c. AEFD là hình gì ?Vi sao?
Help Me!!
Cho tam giác ABC vuông tại A , đường trung tuyến AM . Kẻ MH vuông góc với AB ( H thuộc AB ) , MK vuông góc với AC ( K thuộc AC )
a) Chứng minh : Tứ giác AKMH là hình chữ nhật
b) E là trung điểm của MH . Chứng minh tứ giác BHKM là hình bình hành
c ) Chứng minh 3 điểm B,E,K thẳng hàng
d) Gọi F là trung điểm của MK . Đường thảng HK cắt AE tại I và À tại J . Chứng minh HI = KJ
Tại môt khu nghỉ dưỡng người ta muốn xây một cây cầu bắt qua ao sen (đoạn EF) để du khách có thể đi bộ ngắm sen và đàn cá KOI bơi, cây cầu đi bộ này song song với hai con đường AB và DC. Em hãy tính độ dài cây cầu EF, biết con đường AB và DC dài lần lượt là 40m và 70m, E và F là điểm chính giữa AD và BC.
Bài 1. Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
Bài 2: Cho hình chữ nhật MNPQ. Gọi A là chân đường vuông góc hạ từ P đến NQ. Gọi B;C; D lần lượt là trung điểm của PA; AQ; MN.
a) Chứng minh rằng: BC//MN
b) Chứng minh rằng tứ giác CDNB là hình bình hành
c) Gọi E là giao điểm của NB và PC, gọi F là chân đường vuông góc hạ từ D đến NB. Chứng minh rằng tứ giác FDCE là hình chữ nhật
d) Hạ CG vuông góc với MN tại G; BC cắt NP tại H, chứng minh rằng DB cắt GH tại trung điểm mỗi đường.
Bài 3: Cho hình bình hành ABCD có AB = 8 cm, AD = 4 cm.Gọi M, N lần lượt là trung điểm của AB và CD.
a. Chứng minh tứ giác AMCN là hình bình hành. Hỏi tứ giác AMND là hình gì?
b. Gọi I là giao điểm của AN và DM , K là giao điểm của BN và CM . Tứ giác MINK là hình gì?
c. Chứng minh IK // CD
cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm của BC .Từ M vẽ MD vuông góc với AB ,ME vuông góc với AC
a) chứng minh D là trung điểm của AB, tứ giác BDEMlà hình bình hành
b) vẽ AD vuông góc vs BC tại H . Gọi K là giao điểm của AH và DE. Đường thẳng DH cắt BK tại J và I là trung điểm của MK .
chứng minh J là trọng tâm tam giác ABH và 3 điểm C,I.J thẳng hàng
cho tam giác abc vuông tại a có ab<ac . gọi m là trung điểm của bc , kẻ md vuông góc với ab tại d , me vuông góc với ac tại e
a) chứng minh am = de
b) chứng minh tứ giác dmce là hình bình hành
c) gọi ah là đường cao của tam giác abc (h thuộc bc) . chứng minh tứ giác dhme là hình thang cân