Bài 16:
Nếu giống ở bài thì phải là \(AB=3cm,CD=5cm\) nhé.
Cách dựng:
- Dựng hai tia chung gốc \(Ox\) và \(Oy\) phân biệt không đối nhau.
- Trên \(Ox\) dựng đoạn \(OM=AB=3cm\) và dựng đoạn \(MN=CD=5cm\) sao cho M nằm giữa O và N.
- Trên tia \(Oy\) dựng đoạn \(OP=EF=2cm.\)
- Dựng đường thẳng \(PM.\)
- Từ N dựng đường thẳng song song với \(PM\) cắt tia \(Oy\) tại Q. Ta được đoạn thẳng \(PQ=a\) cần dựng.
Chứng minh:
+ Xét \(\Delta ONQ\) có:
\(PM\) // \(NQ\) (do cách dựng).
=> \(\frac{OM}{MN}=\frac{OP}{PQ}\) (định lí Ta - lét).
=> \(\frac{AB}{CD}=\frac{EF}{a}\)
=> \(\frac{3}{5}=\frac{2}{a}\)
=> \(a=2:\frac{3}{5}\)
=> \(a=\frac{10}{3}\left(cm\right).\)
Vậy \(a=\frac{10}{3}\left(cm\right).\)
Chúc bạn học tốt!