Để \(A=\frac{5}{\sqrt{x}-1}\)nguyên thì \(5⋮\sqrt{x}-1\)
\(\Rightarrow\sqrt{x}-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{2;0;6;-4\right\}\)
\(\Leftrightarrow x\in\left\{4;0;36\right\}\)( thỏa )
Để \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)
Vì \(\sqrt{x}-3⋮\sqrt{x}-3\)
\(\Rightarrow4⋮\sqrt{x}-3\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)
\(\Leftrightarrow x\in\left\{16;4;25;1;49\right\}\)
Máy kia tương tự đi ăn cơm đây :>
Mk lm nốt câu C
\(C=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}-1}=1+\frac{3}{\sqrt{x}-1}\)
Để C nguyên\(\Leftrightarrow\sqrt{x}-1\inƯ_{\left(3\right)}=\left\{\pm3;\pm1\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=3\left(tm\right)\\\sqrt{x}-1=-3\left(l\right)\\\sqrt{x}-1=-1\left(tm\right)\\\sqrt{x}-1=1\left(tm\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=16\\x=0\\x=4\end{matrix}\right.\)