1) \(\left(2x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Rightarrow\left(2x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2=\left(\frac{-3}{5}\right)^2\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x+\frac{1}{5}=\frac{3}{5}\\2x+\frac{1}{5}=\frac{-3}{5}\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}2x=\frac{2}{5}\\2x=\frac{-4}{5}\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=\frac{-2}{5}\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=\frac{1}{5}\\y=\frac{-2}{5}\end{array}\right.\)
2) Ta có:
29 + 299
= 29.(1 + 290)
= 512.(1 + 280.210)
= 512.[1 + (220)4.1024]
= 512.[1 + (...26)4.2014)]
= 512.[1 + (...26).1024]
= 512.[1 + (...24)]
= 512.(...25)
= 128.4.(...25)
= 128.(...00)
= (...00) \(⋮100\)
Chứng tỏ \(2^9+2^{99}⋮100\)
Bài 1:
\(\left(2x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow2x+\frac{1}{5}=\pm\frac{3}{5}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+\frac{1}{5}=\frac{3}{5}\\2x+\frac{1}{5}=-\frac{3}{5}\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}2x=\frac{2}{5}\\2x=-\frac{4}{5}\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=-\frac{2}{5}\end{array}\right.\)
Vậy ........