Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nanako

Bài 1: Tìm m để phương trình cosx=2m có một nghiệm duy nhất thuộc \(\left[\frac{-\pi}{2};\frac{\pi}{3}\right]\)

Bài 2: Tìm số nghiệm thuộc \(\left(-\pi;\pi\right)\) của phương trình \(cot\left(3x-\frac{\pi}{3}\right)=cot\left(x+\frac{\pi}{4}\right)\)

Bài 3: Tất cả các nghiệm của phương trình \(sin\left(2x+\frac{\pi}{3}\right)=\frac{1}{2}\) được biểu diễn bởi bao nhiêu điểm trên đường tròn lượng giác

Nguyễn Việt Lâm
16 tháng 9 2020 lúc 13:34

1.

Từ đường tròn lượng giác ta thấy pt đã cho có nghiệm duy nhất thuộc \(\left[-\frac{\pi}{2};\frac{\pi}{3}\right]\) khi và chỉ khi:

\(\left[{}\begin{matrix}2m=1\\0\le2m< \frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=\frac{1}{2}\\0\le m< \frac{1}{4}\end{matrix}\right.\)

2.

\(\Leftrightarrow3x-\frac{\pi}{3}=x+\frac{\pi}{4}+k\pi\)

\(\Leftrightarrow x=\frac{7\pi}{24}+\frac{k\pi}{2}\)

\(-\pi< \frac{7\pi}{24}+\frac{k\pi}{2}< \pi\Rightarrow-\frac{31}{12}< k< \frac{17}{12}\)

\(\Rightarrow k=\left\{-2;-1;0;1\right\}\) có 4 nghiệm

3.

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\2x+\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\) có 4 điểm biểu diễn


Các câu hỏi tương tự
Hoàng Quốc Tuấn
Xem chi tiết
nanako
Xem chi tiết
M Thiện Nguyễn
Xem chi tiết
Ryan Park
Xem chi tiết
nanako
Xem chi tiết
nanako
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Mai Anh
Xem chi tiết
Nguyễn thị Phụng
Xem chi tiết