\(C=\left|x+1\right|+\left|x-2\right|+\left|x+3\right|\\ =\left|x+1\right|+\left(\left|2-x\right|+\left|x+3\right|\right)\\ \ge0+\left|2-x+x+3\right|\\ =5\)
Dấu "=" xảy ra khi \(\left(2-x\right)\left(x+3\right)\ge0\\ \)
\(\Rightarrow\left\{{}\begin{matrix}2-x\ge0\\x+3\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le2\\x\ge-3\end{matrix}\right.\Rightarrow-3\le x\le2\)
Vậy Min C = 5 khi \(-3\le x\le2\)