\(\left(\sqrt{2}+11\right)^2=2+121\)=123
\(\left(\sqrt{3}+5\right)^2=3+25=28\)
vì 123 > 28 \(\Rightarrow\) kq
\(\left(\sqrt{2}+11\right)^2=2+121\)=123
\(\left(\sqrt{3}+5\right)^2=3+25=28\)
vì 123 > 28 \(\Rightarrow\) kq
bài 1 So sánh
a) 1 và \(\sqrt{3}-1\)
b) 2\(\sqrt{31}\) và 10
c) \(\sqrt{15}-1\) và \(\sqrt{10}\)
So sánh : \(\dfrac{\sqrt{5}+1}{5\sqrt{10-2\sqrt{5}}}\) và \(\dfrac{\sqrt{3}}{6}\)
so sánh
\(\sqrt{2}+\sqrt{3}\) và 2
\(\sqrt{8}+\sqrt{5}\) và \(\sqrt{7}-\sqrt{6}\)
SO SÁNH :
\(\sqrt{2}+\sqrt{11}\) và \(\sqrt{3}+5\)
Bài 2:Cho biểu thức P=\(\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\).\(\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\)
a)Rút gọn BT
b)So sánh P với -\(2\sqrt{x}\)
so sánh
\(\sqrt{1+\sqrt{2+\sqrt{3}}}\) với 2
Bài 3:Cho biểu thức B=\(\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{a\sqrt{a}-a-\sqrt{a}+1}\right)\).\(\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\)(với a>0 và a khác 1)
a)rút gọn B
b)Đặt C=B.(\(a-\sqrt{a}+1\)).So sánh C và 1
So sánh A và B biết :
\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)
\(B=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)
so sánh\(\sqrt{4+\sqrt{5+\sqrt{6}}}\) với 3