Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lingg Ka

Bài 1: So sánh

a) \(2^{225}và3^{150}\)

b) \(2^{91}và5^{35}\)

c) \(3^{4000}và9^{2000}\)

d) \(2^{332}và3^{223}\)

Bài 2: Tính

a) \(\dfrac{120^3}{40^3}\) b) \(\dfrac{45^{10}.5^{20}}{75^{15}}\)

c) \(\dfrac{390^4}{130^4}\)

Giúp mik với tối mik đi hx rùi bạn nèo làm đúng mik tick

Nguyễn Thanh Hằng
29 tháng 6 2017 lúc 12:13

Bài 1 :

a) Ta có :

\(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(3^{150}=\left(3^2\right)^{75}=9^{75}\)

\(8^{75}< 9^{75}\Leftrightarrow2^{225}< 3^{150}\)

b) Ta có :

\(2^{91}=\left(2^{13}\right)^7=8192^7\)

\(5^{35}=\left(5^5\right)^7=3125^7\)

\(8192^7>3125^7\Leftrightarrow2^{91}>5^{35}\)

c)Ta có :

\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)

\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)

\(81^{1000}=81^{1000}\Leftrightarrow3^{4000}=9^{2000}\)

d) Ta có :

\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{223}< 3^{222}=\left(3^2\right)^{111}=9^{111}\)

\(8^{111}< 9^{111}\Leftrightarrow2^{332}< 3^{223}\)

Bài 2 :

a) \(\dfrac{120^3}{40^3}=\left(\dfrac{120}{4}\right)^3=3^3=27\)

b) \(\dfrac{390^4}{130^4}=\left(\dfrac{390}{130}\right)^4=3^4=81\)

c) \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(3^2.5\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.5^{20}}{3^{15}.5^{30}}=3^5=243\)

Nguyễn Thị Hằng
29 tháng 6 2017 lúc 13:13

Bài 1:

a.Ta có :

\(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(3^{150}=\left(3^2\right)^{75}=9^{75}\)

\(8^{75}< 9^{75}\) nên \(2^{225}< 3^{150}\)

b. Ta có :

\(2^{91}=\left(2^{13}\right)^7=8192^7\)

\(5^{35}=\left(5^5\right)^7=3125^7\)

\(8192^7>3125^7\) nên \(2^{91}>5^{35}\)

c. Ta có :

\(3^{4000}=\left(3^2\right)^{2000}=9^{2000}\)

\(9^{2000}=9^{2000}\) nên \(3^{4000}=9^{2000}\)

Bài 2:

a. \(\dfrac{120^3}{30^3}=\dfrac{\left(30.4\right)^3}{30^3}=\dfrac{30^3.4^3}{30^3}=4^3=64\)

b. \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(5.3^2\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}=\dfrac{5^{10}.3^{20}.5^{20}}{3^{15}.5^{30}}=\dfrac{5^{30}.3^{20}}{3^{15}.5^{30}}=3^5=243\)

c. \(\dfrac{390^4}{130^4}=\dfrac{\left(130.3\right)^4}{130^4}=\dfrac{130^4.3^4}{130^4}=3^4=81\)

Trần Quốc Lộc
29 tháng 6 2017 lúc 17:46

\(\text{Câu 1 :}\)

\(\text{a)}\) \(2^{225}\) \(\text{và}\) \(3^{150}\)

\(\text{Ta có :}\)\(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(3^{150}=\left(3^2\right)^{75}=9^{75}\)

\(\text{Mà}\) \(8^{75}< 9^{75}\)

\(\Rightarrow2^{225}< 3^{150}\)

\(\text{Vậy}\) \(2^{225}< 3^{150}\)

\(\text{b)}\) \(2^{91}\) \(\text{và}\) \(5^{35}\)

\(\text{Ta có :}\) \(2^{91}=\left(2^{13}\right)^7=8192^7\)

\(5^{35}=\left(5^5\right)^7=3125^7\)

\(\text{Mà}\) \(8192^7>3125^7\) \(\)

\(\Rightarrow2^{91}>5^{35}\)

\(\text{Vậy}\) \(2^{91}>5^{35}\)

\(\text{c)}\) \(3^{4000}\) \(\text{và}\) \(9^{2000}\)

\(\text{Ta có :}\) \(9^{2000}=\left(3^2\right)^{2000}=3^{4000}\)

\(Mà\) \(3^{4000}=3^{4000}\)

\(\text{Vậy}\) \(3^{4000}=9^{2000}\)

\(\text{d)}\) \(2^{332}\) \(\text{và}\) \(3^{223}\)

\(\text{Ta có : }\) \(2^{332}< 2^{333}\)

\(3^{223}>3^{222}\) \(\left(1\right)\)

\(\text{Ta lại có : }\) \(2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{222}=\left(3^2\right)^{111}=9^{111}\)

\(\text{Mà}\) \(8^{111}< 9^{111}\)

\(\Rightarrow2^{333}< 3^{222}\) \(\left(2\right)\)

\(\text{Từ}\) \(\left(1\right)\) \(\text{và}\) \(\left(2\right)\) \(\text{suy ra : }\)

\(2^{322}< 2^{333}< 3^{222}< 3^{223}\)

\(\Rightarrow2^{332}< 3^{223}\)

\(\text{Vậy}\) \(2^{332}< 3^{223}\)

\(\text{Câu 2 :}\)

\(\text{a)}\) \(\dfrac{120^3}{40^3}=\left(\dfrac{120}{40}\right)^3=3^3=27\)

\(\text{b)}\) \(\dfrac{45^{10}\cdot5^{20}}{75^{15}}=\dfrac{\left(9\cdot5\right)^{10}\cdot5^{20}}{\left(3\cdot25\right)^{15}}\)\(=\dfrac{9^{10}\cdot5^{10}\cdot5^{20}}{3^{15}\cdot25^{15}}\)\(=\dfrac{\left(3^2\right)^{10}\cdot5^{30}}{3^{15}\cdot\left(5^2\right)^{15}}\)\(=\dfrac{3^{20}\cdot5^{30}}{3^{15}\cdot5^{30}}\)\(=\dfrac{3^{20}}{3^{15}}\)\(=3^4=81\)

\(\text{c)}\) \(\dfrac{390^4}{130^4}=\left(\dfrac{390}{130}\right)^4=3^4=81\)


Các câu hỏi tương tự
Lê Lệ Quyên
Xem chi tiết
Phạm Khánh Vân
Xem chi tiết
Lingg Ka
Xem chi tiết
Song Tử Gemini
Xem chi tiết
Tiểu Hồ
Xem chi tiết
Trần Khánh Linh
Xem chi tiết
Anh Triêt
Xem chi tiết
Nguyễn Thị Mai Linh
Xem chi tiết
Hà Chí Hiếu
Xem chi tiết