Bài 1:
a) \(3x^3-6x^2\)
= \(3x^2\left(x-2\right)\)
b) \(x^2+4x+4-9y^2\)
= \(\left(x+2\right)^2-\left(3y\right)^2\)
= \(\left(x+2+3y\right)\left(x+2-3y\right)\)
c) \(x^2-5x-6\)
= \(x^2+1x-6x-6\)
= \(x\left(x+1\right)-6\left(x+1\right)\)
= \(\left(x+1\right)\left(x-6\right)\)
d) \(x^7+x^2+1\)
= \(x^7-x+x^2+x+1\)
= \(x\left(x^6-1\right)+x^2+x+1\)
= \(x\left(x^3+1\right)\left(x^3-1\right)+x^2+x+1\)
= \(x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)
= \(\left(x^5-x^4+x^2-x+1\right)\left(x^2+x+1\right)\)
Bài 2:
a) \(3\left(2x-4\right)+15=-11\)
⇒ \(3\left(2x-4\right)=-11-15\)
⇒ \(3\left(2x-4\right)=-26\)
⇒ \(2x-4=-26:3\)
⇒ \(2x=\frac{-26}{3}+4\)
⇒ \(2x=\frac{-14}{3}\)
⇒ \(x=\frac{-14}{3}:2\)
⇒ \(x=\frac{-7}{3}\)
b) \(x\left(x+2\right)-3x-6=0\)
⇒ \(x\left(x+2\right)-3\left(x+2\right)=0\)
⇒ \(\left(x+2\right)\left(x-3\right)=0\)
⇒ \(x+2=0\) hoặc \(x-3=0\)
TH1: \(x+2=0\)
⇒ \(x=-2\)
TH2: \(x-3=0\)
⇒ \(x=3\)
Vậy x=-2 hoặc x=3
Bài 1:
a) \(3x^3-6x^2\)
\(=3x^2.\left(x-2\right)\)
b) \(x^2+4x+4-9y^2\)
\(=\left(x^2+4x+4\right)-9y^2\)
\(=\left(x^2+2.x.2+2^2\right)-9y^2\)
\(=\left(x+2\right)^2-\left(3y\right)^2\)
\(=\left(x+2-3y\right).\left(x+2+3y\right).\)
c) \(x^2-5x-6\)
\(=x^2-6x+x-6\)
\(=\left(x^2-6x\right)+\left(x-6\right)\)
\(=x.\left(x-6\right)+\left(x-6\right)\)
\(=\left(x-6\right).\left(x+1\right)\)
d) \(x^7+x^2+1\)
\(=x^7+x^6+x^5-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^5.\left(x^2+x+1\right)-x^4.\left(x^2+x+1\right)+x^2.\left(x^2+x+1\right)-x.\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right).\left(x^5-x^4+x^2-x+1\right)\)
Chúc bạn học tốt!
Bài 1:
a,
\(3x^3-6x^2=3x^2\left(x-2\right)\)
b, \(x^2+4x+4-9y^2=\left(x+2\right)^2-\left(3y\right)^2=\left(x-3y+2\right)\left(x+3y+2\right)\)
c,\(x^2-5x-6=\left(x^2+x\right)-\left(6x+6\right)=x\left(x+1\right)-6\left(x+1\right)=\left(x+1\right)\left(x-6\right)\)d,
\(x^2-5x-6=\left(x^2+x\right)-\left(6x+6\right)=x\left(x+1\right)-6\left(x+1\right)=\left(x+1\right)\left(x-6\right)\)
Bài 2: d, \(\left(x+2\right)^2-x\left(x-2\right)^5=64\)
\(\Leftrightarrow\left(x-2\right)^2+8\left(x-2\right)+16-\left(x-2\right)^5=64\)
\(\Leftrightarrow-\left(x-2\right)^5+\left(x-2\right)^2+8\left(x-2\right)-48=0\)
\(\Rightarrow\) Phương trình vô nghiệp.