Bài 1 : Phân tích các đa thức sau thành nhân tử :
a) 8x3 - 64
=(2x)3 + 43
=(2x+4)(4x2 - 8x + 16)
c) 125x3 + 1
=5x3 + 13
=(5x+1)(25x2 +5x+1)
d) 8x3 - 27
=(2x)3 - 33
=(2x - 3)(2x2 + 6x + 9)
e) 1 + 8x6y3
=1 + (2x2y)3
=(1 + 2x2y)(4x4y2 -2x2y + 1)
f) 125x3 + 27y3
=(5x)3 + (3y3)
=(5x + 3y)(25x2 - 15xy + 9y2)
Bài 1
a) \(8x^3-64\)
\(=\left(2x\right)^3-4^3\)
\(=\left(2x-4\right)\left(4x^2+8x+16\right)\)
c) \(125x^3+1\)
\(=\left(5x\right)^3+1^3\)
\(=\left(5x+1\right)\left(25x^2-5x+1\right)\)
d) \(8x^3-27\)
\(=\left(2x\right)^3-3^3\)
\(=\left(2x-3\right)\left(4x^2+6x+9\right)\)
e) \(1+8x^6x^3\)
\(=1^3+\left(2x^2y\right)^3\)
\(=\left(1+2x^2y\right)\left(1-2x^2y+4x^4y^2\right)\)
f) \(125x^3+27y^3\)
\(=\left(5x\right)^3+\left(3y\right)^3\)
\(=\left(5x+3y\right)\left(25x^2-15xy+9x^2\right)\)
Bài 2
b) \(x^3+6x^2+12x+8\)
\(=x^3+3.x^2.2+3.x.2^2+2^3\)
\(=\left(x+2\right)^3\)
c) \(x^3-3x^2+3x-1\)
\(=x^3-3.x^2.1+3.x.1^2-1^3\)
\(=\left(x-1\right)^3\)
d) \(27x^3-54x^2y+36xy^2-8y^3\)
\(=\left(3x\right)^3-3.\left(3x\right)^2.2y+3.3x.\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(3x-2y\right)^3\)