§2. Phương trình quy về phương trình bậc nhất, bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đào Mai Phương

Bài 1: Giải các phương trình sau:

a, 1+ \(\frac{2}{3}\). \(\sqrt{x-x^2}\)= \(\sqrt{x}\)+ \(\sqrt{1-x}\)

b, x2 + \(\sqrt{x+5}\)= 5

c, \(\sqrt{3x-3}\) - \(\sqrt{5-x}\) = \(\sqrt{2x-4}\)

Nguyễn Việt Lâm
22 tháng 11 2019 lúc 23:36

a/ ĐKXĐ: \(0\le x\le1\)

Đặt \(\sqrt{x}+\sqrt{1-x}=a>0\Rightarrow\sqrt{x-x^2}=\frac{a^2-1}{2}\)

Ta được:

\(1+\frac{a^2-1}{3}=a\Leftrightarrow a^2-3a+2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x\left(1-x\right)}=0\\2\sqrt{x-x^2}=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\left(1-x\right)=0\\-4x^2+4x-9=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

b/ ĐKXĐ: ...

Đặt \(\sqrt{x+5}=a\ge0\Rightarrow a^2-x=5\)

\(x^2+a=a^2-x\)

\(\Leftrightarrow x^2-a^2+a+x=0\)

\(\Leftrightarrow\left(a+x\right)\left(x-a+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-x\\a=x+1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=-x\left(x\le0\right)\\\sqrt{x+5}=x+1\left(x\ge-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2\left(x\le0\right)\\x+5=x^2+2x+1\left(x\ge-1\right)\end{matrix}\right.\) \(\Leftrightarrow...\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
22 tháng 11 2019 lúc 23:39

c/ ĐKXĐ: \(2\le x\le5\)

\(\Leftrightarrow\sqrt{3x-3}=\sqrt{2x-4}+\sqrt{5-x}\)

\(\Leftrightarrow3x-3=x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}\)

\(\Leftrightarrow x-2=\sqrt{\left(2x-4\right)\left(5-x\right)}\)

\(\Leftrightarrow\left(x-2\right)^2=\left(2x-4\right)\left(5-x\right)\)

\(\Leftrightarrow\left(x-2\right)\left(3x-12\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Miner Đức
Xem chi tiết
Sad Boy
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Tam Cao Duc
Xem chi tiết
Nguyễn Việt Anh
Xem chi tiết
phanh huỳnh bảo châu
Xem chi tiết
Thu Nguyen Thi
Xem chi tiết