cho tam giác ABC . tìm tập hợp điểm M trong các trường hợp sau :
a, \(\left|2\overrightarrow{MA}+3\overrightarrow{MB}\right|=\left|3\overrightarrow{MB}-2\overrightarrow{MC}\right|\)
b, \(\left|4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
Cho tam giác ABC. Tìm Tập hợp các điểm M sao cho \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+\overrightarrow{2MB}+\overrightarrow{3MC}\right|\)
Cho tam giác ABC. Tìm quỹ tích điểm M sao cho:
a.\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) = \(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
b. \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\dfrac{3}{2}\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\)
c. \(\left|\overrightarrow{MA}+2\overrightarrow{MB}+\overrightarrow{MC}\right|\) = \(\left|\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}\right|\)
1. Cho tam giác ABC có 3 trung tuyến là AM, BN, CP. Chứng minh rằng
a) \(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
2. Cho tam giác ABC tìm điểm M thỏa mãn:
a) \(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{BC}\)
Cho tam giác ABC, gọi M là điểm thuộc cạnh BC sao cho MB = 2 MC, biểu diễn \(\overrightarrow{AM}=m\overrightarrow{AB}+n\overrightarrow{AC}\). Giá trị m.n bằng...
Cho ΔABC . Tìm tập hợp điểm M thoả mãn :
a, \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\frac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
b, \(\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
c,\(\left|\overrightarrow{2MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{4MB}-\overrightarrow{MC}\right|\)
d, \(\left|\overrightarrow{4MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{2MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
cho tam giác ABC vuông tại A, biết AB=3a, AC=4a. Tập hợp các điểm M thỏa mãn
a) \(\left|3\overrightarrow{MA}-\overrightarrow{MC}\right|=\left|\overrightarrow{BC}-2\overrightarrow{AB}\right|\)
b) \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{BA}-2\overrightarrow{AC}\right|\)
Cho tam giác ABC. Xác định điểm I,K,M sao cho :
a,\(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\)
b,\(\overrightarrow{KA}+2\overrightarrow{KB}=\overrightarrow{CB}\)
c,\(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{0}\)
Cho tứ giác ABCD . Tìm số k và điểm I cố định sao cho các tổng vectơ sau có thể viết dưới dạng \(\overrightarrow{k.MI}\) ∀ M
a, \(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}=k\overrightarrow{MI}\)
b. \(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=k\overrightarrow{MI}\)
c, \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=k\overrightarrow{MI}\)
d, \(2\overrightarrow{MA}-3\overrightarrow{MC}+2\overrightarrow{MD}=k\overrightarrow{MI}\)