a, A = \(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}+\dfrac{x^2+3}{4-x^2}\)
\(=\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}-\dfrac{x^2+3}{x^2-4}\)
\(=\dfrac{\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)-x^2-3}{x^2-4}\)
\(=\dfrac{x^2+1}{x^2-4}\)
b, Để A> 0 thì \(x^2+1\) và \(x^2-4\) phải cùng dấu
mà \(x^2+1>0\)
=> \(x^2-4>0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
c, Thay A=\(\dfrac{x^2+1}{x^2-4}\) vào ta được:
\(\left|\dfrac{x^2+1}{x^2-4}.\left(x^2-4\right)\right|=2\)
\(\Leftrightarrow\left|x^2+1\right|=2\)
T/h 1: \(x^2+1=2\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)
T/h 2: \(x^2+1=-2\Leftrightarrow x^2=-3\) (loại)