\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{a+c}\Leftrightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{a+c}{ac}\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{a}+\frac{1}{c}\\\frac{1}{a}=\frac{1}{b}\\\frac{1}{b}=\frac{1}{c}\end{matrix}\right.\) \(\Rightarrow a=b=c\)
\(\left(a-b\right)^3+\left(a-c\right)^3+\left(b-c\right)^3=0\)