\(Q=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(=\dfrac{\sqrt{2\left(a+b\right)}}{\sqrt{2}}+\dfrac{\sqrt{2\left(b+c\right)}}{\sqrt{2}}+\dfrac{\sqrt{2\left(c+a\right)}}{\sqrt{2}}\)
\(\le\dfrac{\dfrac{2+\left(a+b\right)}{2}}{\sqrt{2}}+\dfrac{\dfrac{2+\left(b+c\right)}{2}}{\sqrt{2}}+\dfrac{\dfrac{2+\left(c+a\right)}{2}}{\sqrt{2}}\)
\(=\dfrac{6+2\left(a+b+c\right)}{2\sqrt{2}}=\dfrac{6+2.3}{2\sqrt{2}}=3\sqrt{2}\)
- Vậy \(MaxQ=3\sqrt{2}\), đạt tại \(a=b=c=1\)