1. a) cho \(1\le a,b,c\le2\). Tìm max \(P=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)
b) \(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=1\end{matrix}\right.\). Cmr: \(\sqrt{\frac{3a^2+1}{3b^2+1}}+\sqrt{\frac{3b^2+1}{3c^2+1}}+\sqrt{\frac{3c^2+1}{3a^2+1}}\le\frac{7}{2}\)
2.a) \(a,b\ge0;c\ge1;a+b+c=2\). cmr: \(\left(6-a^2-b^2-c^2\right)\left(2-abc\right)\le8\)
b) \(\left\{{}\begin{matrix}a+b\le2\\a^2+b^2+ab=3\end{matrix}\right.\). Tìm max,min \(P=a^2+b^2-ab\)
cho 3 số thực không âm a,b,c sao cho a2+b2+c2=1 . cmr \(\dfrac{bc}{a^2+1}+\dfrac{ca}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{3}{4}\) (giải chi tiết với ạ !!!!)
1. tìm max, min : a) \(B=\frac{x-y}{x^4+y^4+6}\)
b) \(C=\frac{2x+3y}{2x+y+3}\) với \(4x^2+y^2=1\)
c) \(P=\frac{x+y}{x^2-xy+y^2}\) với \(1\le x,y\le2\)
2. Cho biểu thức \(A=\frac{a^3+b^3+c^3}{abc}\) với \(1\le a\le b\le c\le2\)
a) Cmr: \(A\le\frac{b}{c}+\frac{c}{b}+\frac{a}{c}+\frac{c}{a}\) b) Tìm Max A
Cho a, b, c dương. CMR: \(\dfrac{2a^2+3b^2}{2a^3+3b^3}+\dfrac{2b^2+3a^2}{2b^3+3a^3}\le\dfrac{4}{a+b}\)
cho a,b,c>0 . CMR: \(\frac{b}{a+3b}+\frac{c}{b+3c}+\frac{a}{c+3a}\le\frac{a+b+c}{4}\)
Cho a,b là các số dương. CMR:
\(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\le\frac{4}{a+b}\)
1.\(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca=3\end{matrix}\right.\) Cmr: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)
2.\(a,b,c>0\). Cmr: \(\frac{ab^2}{a^2+2b^2+c^2}+\frac{bc^2}{b^2+2c^2+a^2}+\frac{ca^2}{c^2+2a^2+b^2}\le\frac{a+b+c}{4}\)
3. \(a,b,c>0\). Cmr: \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
a,b là các số dương. CMR:
\(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\le\frac{4}{a+b}\)
1. cho \(0< a\le b\le c\) . Cmr: \(\frac{2a^2}{b^2+c^2}+\frac{2b^2}{c^2+a^2}+\frac{2c^2}{a^2+b^2}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
2. cho \(a,b,c\ge0\). cmr: \(a^2+b^2+c^2+3\sqrt[3]{\left(abc\right)^2}\ge2\left(ab+bc+ca\right)\)
3. \(a,b,c>0.\) Cmr: \(\sqrt{\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)}\ge abc+\sqrt[3]{\left(a^3+abc\right)\left(b^3+abc\right)\left(c^3+abc\right)}\)
4. \(a,b,c>0\). Tìm Min \(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4\)