Cho a, b > 0. CM: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{a^2+b^2}\ge\frac{32\left(a^2+b^2\right)}{\left(a+b\right)^4}\)
a) \(\dfrac{a-1}{\sqrt{b}-1}\).\(\sqrt{\dfrac{b-2\sqrt{b}+1}{\left(a-1\right).4}}\) (a,b≠1,b>0)
b) (1+\(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\)).(1-\(\dfrac{a-\sqrt{a}}{\sqrt{a-1}}\)) (a≠1,a>0)
Rút gọn các biểu thức
a, \(\sqrt{27.48\left(1-a\right)^2}\) với a > 1
b, \(\frac{1}{a-b}.\sqrt{a^4\left(a-b\right)^2}\) với a > b
c, \(\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
Với a>0, b>0, b#1/4, rút gọn bt: \(\frac{a+\sqrt{a}+\frac{1}{4}}{2\sqrt{a}+1}\) : \(\frac{4b-1}{8\sqrt{b}-4}\)
Rút gọn các biểu thức
\(A=\left(\frac{\sqrt{a}-2}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\frac{4}{\sqrt{a}}\right)\)
\(B=\frac{1}{1-\sqrt{a}}+\frac{a\sqrt{a}}{\sqrt{a}-1}\)
\(Cho A=\frac{1}{(x+y)^3}(\frac{1}{x^4+y^4})\) ;\(B=\frac{2}{(x+y)^4}(\frac{1}{x^3}-\frac{1}{y^3})\) :C=\(\frac{2}{(x+y)^5}(\frac{1}{x^2}-\frac{1}{y^2})\) Tính A+B+C \)
1.So sánh
a) \(\sqrt{2002}+\sqrt{2004}\) và \(2\sqrt{2003}\)
b)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\) và \(\sqrt{2}\)
2. Rút gọn
a) \(\frac{a^2-\sqrt{a}}{a+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}\) với 0 ≤ a ≥ 1
b) \(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)
c) \(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
d) \(\frac{a+b+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a-b}{\sqrt{a}-\sqrt{b}}\)
e)\(\frac{\sqrt{a}-1}{a\sqrt{a}-a+\sqrt{a}}:\frac{1}{a^2+\sqrt{a}}\)
3. Giải phương trình
a)\(\frac{\sqrt{27x}}{\sqrt{3}}=6\)
b)\(\sqrt{x+1}=3-\sqrt{x}\)
c) \(\sqrt{2x+1}=2+\sqrt{x-3}\)
d) \(\sqrt{x-5}-\frac{x-14}{3+\sqrt{x-5}}=3\)
a:\(\dfrac{b}{\left(a-4\right)^2}.\sqrt{\dfrac{\left(a-4\right)^4}{b^2}}\left(b>0;a\ne4\right)\)
b:\(\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\left(x\ge0;y\ge0;x\ne0\right)\)
c:\(\dfrac{a}{\left(b-2\right)^2}.\sqrt{\dfrac{\left(b-2\right)^4}{a^2}\left(a>0;b\ne2\right)}\)
d:\(\dfrac{x}{\left(y-3\right)^2}.\sqrt{\dfrac{\left(y-3\right)^2}{x^2}\left(x>0;y\ne3\right)}\)
e:2x +\(\dfrac{\sqrt{1-6x+9x^2}}{3x-1}\)
1. Cho P = \(\frac{x}{x+2}\)+ \(\frac{x+3}{x-2}\)+\(\frac{6-9x}{4-x^2}\)
a) Rút gọn P
b) Tìm x để P=3
2. Cho B= \(\frac{2a^2}{a^2-1}\)+\(\frac{a}{a+1}\)-\(\frac{a}{a-1}\)
a) Rút gọn B
b) Tìm a nguyên để B nguyên
3. Rút gọn Q= \(\frac{4}{x+2}+\frac{2}{x-2}+\frac{6-5x}{x^2-4}\)
4. Cho P=\(\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{x-4}\right)\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}+3\right)\)
a) Rút gọn P
b) Tìm x để P=-4
\(\Leftrightarrow\)Giúp với mình cần gấp\(\Leftrightarrow\)