\(\Delta BDE\) co AM//DE
\(\Rightarrow\dfrac{BD}{BM}=\dfrac{DE}{AM}\)
\(\Delta ACM\) co AM//DF \(\left(F\in DE\right)\)
\(\Rightarrow\dfrac{CD}{CM}=\dfrac{FD}{AM}\)
Ta co: \(\dfrac{CD}{CM}+\dfrac{BD}{BM}=\dfrac{FD}{AM}+\dfrac{DE}{AM}\)
\(\Rightarrow\dfrac{BC}{BM}=\dfrac{FD+DE}{AM}\)
\(\Rightarrow\dfrac{FD+DE}{AM}=2\)(M la trug diem cua BC)
\(\Rightarrow DE+FD=2AM\)