b) Ta có: \(-5+\left|3x-1\right|+6=\left|-4\right|\)
\(\Leftrightarrow\left|3x+1\right|+1=4\)
\(\Leftrightarrow\left|3x+1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=3\\3x+1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{2}{3};-\dfrac{4}{3}\right\}\)
c) Ta có: \(\left(x-1\right)^2=\left(x-1\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2-\left(x-1\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^4-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x-1-1\right)\left(x-1+1\right)=0\)
\(\Leftrightarrow x\cdot\left(x-1\right)^2\cdot\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{0;1;2\right\}\)
d) Ta có: \(5^{-1}\cdot25^x=125\)
\(\Leftrightarrow5^{-1}\cdot5^{2x}=5^3\)
\(\Leftrightarrow5^{2x-1}=5^3\)
\(\Leftrightarrow2x-1=3\)
\(\Leftrightarrow2x=4\)
hay x=2
Vậy: x=2