B=1+3+32+...+3100
=>B=30+31+32+....+3100
=>3B=3.(30+31+32+....+3100)
=>3B=31+32+33+.....+3101
=> 3B-B=(31+32+33+....+3101)-(30+31+32+...+3100)
=>2B = 3101-30
=>2B = 3101-1
=>B= \(\frac{3^{101}-1}{2}\)
\(B=1+3+3^2+...+3^{100}\)
\(\Rightarrow B=3^0+3^1+3^2+...+3^{100}\)
\(\Rightarrow3B=3^1+3^2+3^3+...+3^{101}\)
\(\Rightarrow3B-B=3^{101}-3^0\)
\(\Rightarrow2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{101}-1}{2}\)