3.Áp dụng bđt Cô-si, tìm GTNN:
a)\(y=\frac{x}{2}+\frac{2}{x-1};x>1\)
b)\(y=\frac{5x}{3}+\frac{5}{3x-1};x>\frac{1}{3}\)
c)\(y=\frac{2x}{1-x}+\frac{3}{x};0< x< 1\)
d)\(y=\frac{x^2+2020x+9}{x};x>0\)
áp dụng bđt cô si để tìm GTLN của các biếu thức sau:
a, y= (2x+5)(5-x) 0< x<1
b, y= ( 6x+3) (5-2x) \(\frac{-1}{2}\le x\le\frac{5}{2}\)ư
c, \(\frac{x}{x^2+2}\) x>0
giải các bpt sau:
a) \(\frac{3}{2-x}< 1\)
b) \(\frac{3x-4}{x-2}>1\)
c) \(\frac{2x-5}{2-x}\le-1\)
d) \(2x-\frac{4x}{1-x}< \frac{4}{x-1}-2\)
e) \(\frac{2}{x-1}\le\frac{5}{2x-1}\)
f) \(\frac{x-3}{x+1}>\frac{x+5}{x-2}\)
g) \(\frac{x-3}{x+5}< \frac{1-2x}{x-3}\)
Câu 3 : Giác các bất phương trình sau
a , \(\frac{2}{x-1}< \frac{5}{2x-1}\)
b , \(\frac{1}{x+1}< \frac{1}{\left(x-1\right)^2}\)
c , \(\frac{1}{x}+\frac{2}{x+4}< \frac{3}{x+3}\)
d , \(\frac{x^2-3x+1}{x^2-1}< 1\)
e , \(\frac{3}{2-x}< 1\)
f , \(\frac{x^2+x-3}{x^2-4}\ge1\)
g , \(\frac{1}{x-1}+\frac{1}{x+2}>\frac{1}{x-2}\)
h , \(\frac{3x-4}{x-2}>1\)
i , \(\frac{2x-5}{2-x}\ge-1\)
k , \(\frac{-4}{3x+1}< \frac{3}{2-x}\)
l , \(\frac{2}{x-3}+\frac{4}{x+3}\le\frac{5x-1}{x^2-9}\)
m , \(\frac{x+1}{18}+\frac{-2x+1}{9}\le1\)
Câu 4 : Giải các phương trình sau
a , \(\)\(\frac{-25}{\left(-x+2\right)\left(-3x-2\right)}\)< 0
b , \(\frac{1}{x-1}>\frac{2}{2x-1}\)
c , \(\frac{2}{-x+3}+\frac{1}{\frac{1}{2}x-\frac{3}{2}}\le0\)
d , \(\frac{x-1}{x^2-3x+2}\le1\)
e , \(\frac{x+1}{x^2+x+2}>\frac{1}{x+1}\)
xét dấu các biểu thức sau
a) \(\frac{x^2}{3x-8}\ge1\)
b) \(\frac{x^2-3x+24}{x^2-3x+3}
bài 1giải bpt
a) \(\frac{x+2}{3}-x+1>x+3\)
b) \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\)
c) \(\frac{\left(x-2\right)\sqrt{x-1}}{\sqrt{x-1}}< 2\)
bài 2 \ giải hệ bpt
a) \(\left\{{}\begin{matrix}2-x>0\\2x+1>x-2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\frac{2x-1}{3}< -x+1\\\frac{4-3x}{2}< 3-x\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}-2x+\frac{3}{5}>\frac{3\left(2x-7\right)}{3}\\x-\frac{1}{2}< \frac{5\left(3x-1\right)}{2}\end{matrix}\right.\)
Mgọi người giúp mình với ạ
Câu 1 : Xét dấu các biểu thức sau :
a , f(x) = \(\left(2x-1\right)\left(x+3\right)\)
b , f(x)= \(\left(-3x-3\right)\left(x+2\right)\left(x+3\right)\)
c , f(x) = \(\frac{-4}{3x+1}-\frac{3}{2-x}\)
d , f (x) = \(4x^2-1\)
e , f(x)= \(\left(-2x+3\right)\left(x-2\right)\left(x+4\right)\)
f , f(x) = \(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\)
g , f (x) = \(\frac{3}{2x-1}-\frac{1}{x-2}\)
h , f ( x) = \(\left(4x-1\right)\left(x+2\right)\left(3x-5\right)\left(-2x+7\right)\)
tìm GTLN
A=\(3x^2\left(8-x^2\right)\) với \(-2\sqrt{2}\le x\le2\sqrt{2}\)
B=4x(8-5x) với \(0\le x\le\frac{8}{5}\)
C=4(x-1)(8-5x) với \(1\le x\le\frac{8}{5}\)
D=x\(\left(3-\sqrt{3}\right)\) với \(0\le x\le\sqrt{3}\)
Tìm GTNN
A=\(\frac{3x}{2}+\frac{2}{x-1}\) với x>1
B=x+\(\frac{2}{3x-1}\) với x>1/3